These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30946675)

  • 1. Seq2seq Fingerprint with Byte-Pair Encoding for Predicting Changes in Protein Stability upon Single Point Mutation.
    Kawano K; Koide S; Imamura C
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1762-1772. PubMed ID: 30946675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepDDG: Predicting the Stability Change of Protein Point Mutations Using Neural Networks.
    Cao H; Wang J; He L; Qi Y; Zhang JZ
    J Chem Inf Model; 2019 Apr; 59(4):1508-1514. PubMed ID: 30759982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Prediction of Single and Multiple Point Protein Mutations Stability Changes.
    Álvarez-Machancoses Ó; De Andrés-Galiana EJ; Fernández-Martínez JL; Kloczkowski A
    Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31906171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino Acid Encoding Methods for Protein Sequences: A Comprehensive Review and Assessment.
    Jing X; Dong Q; Hong D; Lu R
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1918-1931. PubMed ID: 30998480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence feature-based prediction of protein stability changes upon amino acid substitutions.
    Teng S; Srivastava AK; Wang L
    BMC Genomics; 2010 Nov; 11 Suppl 2(Suppl 2):S5. PubMed ID: 21047386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PARROT is a flexible recurrent neural network framework for analysis of large protein datasets.
    Griffith D; Holehouse AS
    Elife; 2021 Sep; 10():. PubMed ID: 34533455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural-network-based method for predicting protein stability changes upon single point mutations.
    Capriotti E; Fariselli P; Casadio R
    Bioinformatics; 2004 Aug; 20 Suppl 1():i63-8. PubMed ID: 15262782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning.
    Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S
    Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0.
    Dehouck Y; Grosfils A; Folch B; Gilis D; Bogaerts P; Rooman M
    Bioinformatics; 2009 Oct; 25(19):2537-43. PubMed ID: 19654118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic variable-length segmentation of protein sequences for discriminative motif discovery (DiMotif) and sequence embedding (ProtVecX).
    Asgari E; McHardy AC; Mofrad MRK
    Sci Rep; 2019 Mar; 9(1):3577. PubMed ID: 30837494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting protein-protein interactions using high-quality non-interacting pairs.
    Zhang L; Yu G; Guo M; Wang J
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):525. PubMed ID: 30598096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving protein secondary structure prediction using a multi-modal BP method.
    Qu W; Sui H; Yang B; Qian W
    Comput Biol Med; 2011 Oct; 41(10):946-59. PubMed ID: 21880310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PoPMuSiC, rationally designing point mutations in protein structures.
    Kwasigroch JM; Gilis D; Dehouck Y; Rooman M
    Bioinformatics; 2002 Dec; 18(12):1701-2. PubMed ID: 12490462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence.
    Qiu J; Bernhofer M; Heinzinger M; Kemper S; Norambuena T; Melo F; Rost B
    J Mol Biol; 2020 Mar; 432(7):2428-2443. PubMed ID: 32142788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust prediction of mutation-induced protein stability change by property encoding of amino acids.
    Kang S; Chen G; Xiao G
    Protein Eng Des Sel; 2009 Feb; 22(2):75-83. PubMed ID: 19054789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards sequence-based prediction of mutation-induced stability changes in unseen non-homologous proteins.
    Folkman L; Stantic B; Sattar A
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S4. PubMed ID: 24564514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural networks to learn protein sequence-function relationships from deep mutational scanning data.
    Gelman S; Fahlberg SA; Heinzelman P; Romero PA; Gitter A
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34815338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.