These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30946924)

  • 1. Hemodynamic effects of chest compression interruptions during pediatric in-hospital cardiopulmonary resuscitation.
    Morgan RW; Landis WP; Marquez A; Graham K; Roberts AL; Lauridsen KG; Wolfe HA; Nadkarni VM; Topjian AA; Berg RA; Kilbaugh TJ; Sutton RM
    Resuscitation; 2019 Jun; 139():1-8. PubMed ID: 30946924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interruptions in cardiopulmonary resuscitation from paramedic endotracheal intubation.
    Wang HE; Simeone SJ; Weaver MD; Callaway CW
    Ann Emerg Med; 2009 Nov; 54(5):645-652.e1. PubMed ID: 19573949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal interruption of cardiopulmonary resuscitation for a single shock as mandated by automated external defibrillations does not compromise outcomes in a porcine model of cardiac arrest and resuscitation.
    Ristagno G; Tang W; Russell JK; Jorgenson D; Wang H; Sun S; Weil MH
    Crit Care Med; 2008 Nov; 36(11):3048-53. PubMed ID: 18824916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest.
    Timerman S; Cardoso LF; Ramires JA; Halperin H
    Resuscitation; 2004 Jun; 61(3):273-80. PubMed ID: 15172705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association between time of day and CPR quality as measured by CPR hemodynamics during pediatric in-hospital CPR.
    Wolfe HA; Morgan RW; Sutton RM; Reeder RW; Meert KL; Pollack MM; Yates AR; Berger JT; Newth CJ; Carcillo JA; McQuillen PS; Harrison RE; Moler FW; Carpenter TC; A Notterman D; Dean JM; Nadkarni VM; Berg RA;
    Resuscitation; 2020 Aug; 153():209-216. PubMed ID: 32622016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association between chest compression rates and clinical outcomes following in-hospital cardiac arrest at an academic tertiary hospital.
    Kilgannon JH; Kirchhoff M; Pierce L; Aunchman N; Trzeciak S; Roberts BW
    Resuscitation; 2017 Jan; 110():154-161. PubMed ID: 27666168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2017 American Heart Association Focused Update on Pediatric Basic Life Support and Cardiopulmonary Resuscitation Quality: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.
    Atkins DL; de Caen AR; Berger S; Samson RA; Schexnayder SM; Joyner BL; Bigham BL; Niles DE; Duff JP; Hunt EA; Meaney PA
    Circulation; 2018 Jan; 137(1):e1-e6. PubMed ID: 29114009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical versus manual chest compressions for cardiac arrest.
    Wang PL; Brooks SC
    Cochrane Database Syst Rev; 2018 Aug; 8(8):CD007260. PubMed ID: 30125048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A randomized comparison of three chest compression techniques and associated hemodynamic effect during infant CPR: A randomized manikin study.
    Smereka J; Szarpak L; Rodríguez-Núñez A; Ladny JR; Leung S; Ruetzler K
    Am J Emerg Med; 2017 Oct; 35(10):1420-1425. PubMed ID: 28433454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional outcomes among survivors of pediatric in-hospital cardiac arrest are associated with baseline neurologic and functional status, but not with diastolic blood pressure during CPR.
    Wolfe HA; Sutton RM; Reeder RW; Meert KL; Pollack MM; Yates AR; Berger JT; Newth CJ; Carcillo JA; McQuillen PS; Harrison RE; Moler FW; Carpenter TC; Notterman DA; Holubkov R; Dean JM; Nadkarni VM; Berg RA; ; ;
    Resuscitation; 2019 Oct; 143():57-65. PubMed ID: 31404636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closing the Gap: Optimizing Performance to Reduce Interruptions in Cardiopulmonary Resuscitation.
    Jones SI; Jeffers JM; Perretta J; Stella A; Sorcher JL; Hunt EA; Duval-Arnould JM
    Pediatr Crit Care Med; 2020 Sep; 21(9):e592-e598. PubMed ID: 32168299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pilot Study to Compare the Use of End-Tidal Carbon Dioxide-Guided and Diastolic Blood Pressure-Guided Chest Compression Delivery in a Swine Model of Neonatal Asphyxial Cardiac Arrest.
    O'Brien CE; Reyes M; Santos PT; Heitmiller SE; Kulikowicz E; Kudchadkar SR; Lee JK; Hunt EA; Koehler RC; Shaffner DH
    J Am Heart Assoc; 2018 Oct; 7(19):e009728. PubMed ID: 30371318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. American Heart Association cardiopulmonary resuscitation quality targets are associated with improved arterial blood pressure during pediatric cardiac arrest.
    Sutton RM; French B; Nishisaki A; Niles DE; Maltese MR; Boyle L; Stavland M; Eilevstjønn J; Arbogast KB; Berg RA; Nadkarni VM
    Resuscitation; 2013 Feb; 84(2):168-72. PubMed ID: 22960227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of the video-laryngoscope (GlideScope®) for endotracheal intubation during uninterrupted chest compressions in actual advanced life support: a clinical observational study in an urban emergency department.
    Park SO; Baek KJ; Hong DY; Kim SC; Lee KR
    Resuscitation; 2013 Sep; 84(9):1233-7. PubMed ID: 23541527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario.
    Kern KB; Hilwig RW; Berg RA; Sanders AB; Ewy GA
    Circulation; 2002 Feb; 105(5):645-9. PubMed ID: 11827933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival and Cardiopulmonary Resuscitation Hemodynamics Following Cardiac Arrest in Children With Surgical Compared to Medical Heart Disease.
    Yates AR; Sutton RM; Reeder RW; Meert KL; Berger JT; Fernandez R; Wessel D; Newth CJ; Carcillo JA; McQuillen PS; Harrison RE; Moler FW; Pollack MM; Carpenter TC; Notterman DA; Dean JM; Nadkarni VM; Berg RA;
    Pediatr Crit Care Med; 2019 Dec; 20(12):1126-1136. PubMed ID: 31453988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association Between Diastolic Blood Pressure During Pediatric In-Hospital Cardiopulmonary Resuscitation and Survival.
    Berg RA; Sutton RM; Reeder RW; Berger JT; Newth CJ; Carcillo JA; McQuillen PS; Meert KL; Yates AR; Harrison RE; Moler FW; Pollack MM; Carpenter TC; Wessel DL; Jenkins TL; Notterman DA; Holubkov R; Tamburro RF; Dean JM; Nadkarni VM;
    Circulation; 2018 Apr; 137(17):1784-1795. PubMed ID: 29279413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved neurological outcome with continuous chest compressions compared with 30:2 compressions-to-ventilations cardiopulmonary resuscitation in a realistic swine model of out-of-hospital cardiac arrest.
    Ewy GA; Zuercher M; Hilwig RW; Sanders AB; Berg RA; Otto CW; Hayes MM; Kern KB
    Circulation; 2007 Nov; 116(22):2525-30. PubMed ID: 17998457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest.
    Berg RA; Sanders AB; Kern KB; Hilwig RW; Heidenreich JW; Porter ME; Ewy GA
    Circulation; 2001 Nov; 104(20):2465-70. PubMed ID: 11705826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survival and Hemodynamics During Pediatric Cardiopulmonary Resuscitation for Bradycardia and Poor Perfusion Versus Pulseless Cardiac Arrest.
    Morgan RW; Reeder RW; Meert KL; Telford R; Yates AR; Berger JT; Graham K; Landis WP; Kilbaugh TJ; Newth CJ; Carcillo JA; McQuillen PS; Harrison RE; Moler FW; Pollack MM; Carpenter TC; Notterman D; Holubkov R; Dean JM; Nadkarni VM; Berg RA; Sutton RM;
    Crit Care Med; 2020 Jun; 48(6):881-889. PubMed ID: 32301844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.