These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 30946972)
1. Factors controlling the variability of Delmas M; Garcia-Sanchez L; Onda Y J Environ Radioact; 2019 Aug; 204():1-11. PubMed ID: 30946972 [TBL] [Abstract][Full Text] [Related]
2. Temporal changes in dissolved Iwagami S; Tsujimura M; Onda Y; Nishino M; Konuma R; Abe Y; Hada M; Pun I; Sakaguchi A; Kondo H; Yamamoto M; Miyata Y; Igarashi Y J Environ Radioact; 2017 Jan; 166(Pt 3):458-465. PubMed ID: 25975738 [TBL] [Abstract][Full Text] [Related]
3. Contribution of radioactive Iwagami S; Onda Y; Tsujimura M; Abe Y J Environ Radioact; 2017 Jan; 166(Pt 3):466-474. PubMed ID: 27475667 [TBL] [Abstract][Full Text] [Related]
4. Vertical distribution and temporal dynamics of dissolved Iwagami S; Onda Y; Tsujimura M; Hada M; Pun I Environ Pollut; 2017 Nov; 230():1090-1098. PubMed ID: 28764125 [TBL] [Abstract][Full Text] [Related]
5. Distribution of dissolved and particulate radiocesium concentrations along rivers and the relations between radiocesium concentration and deposition after the nuclear power plant accident in Fukushima. Tsuji H; Yasutaka T; Kawabe Y; Onishi T; Komai T Water Res; 2014 Sep; 60():15-27. PubMed ID: 24813506 [TBL] [Abstract][Full Text] [Related]
6. Size distribution studies of 137Cs in river water in the Abukuma Riverine system following the Fukushima Dai-ichi Nuclear Power Plant accident. Sakaguchi A; Tanaka K; Iwatani H; Chiga H; Fan Q; Onda Y; Takahashi Y J Environ Radioact; 2015 Jan; 139():379-389. PubMed ID: 24929977 [TBL] [Abstract][Full Text] [Related]
7. Effects of radiocesium inventory on (137)Cs concentrations in river waters of Fukushima, Japan, under base-flow conditions. Ochiai S; Ueda S; Hasegawa H; Kakiuchi H; Akata N; Ohtsuka Y; Hisamatsu S J Environ Radioact; 2015 Jun; 144():86-95. PubMed ID: 25827575 [TBL] [Abstract][Full Text] [Related]
8. Modeling radiocesium transport from a river catchment based on a physically-based distributed hydrological and sediment erosion model. Kinouchi T; Yoshimura K; Omata T J Environ Radioact; 2015 Jan; 139():407-415. PubMed ID: 25131841 [TBL] [Abstract][Full Text] [Related]
9. Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: A review. Evrard O; Laceby JP; Lepage H; Onda Y; Cerdan O; Ayrault S J Environ Radioact; 2015 Oct; 148():92-110. PubMed ID: 26142817 [TBL] [Abstract][Full Text] [Related]
10. Trend of Nakanishi T; Sakuma K Chemosphere; 2019 Jan; 215():272-279. PubMed ID: 30317098 [TBL] [Abstract][Full Text] [Related]
11. An extensive study of the concentrations of particulate/dissolved radiocaesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in various river systems and their relationship with catchment inventory. Yoshimura K; Onda Y; Sakaguchi A; Yamamoto M; Matsuura Y J Environ Radioact; 2015 Jan; 139():370-378. PubMed ID: 25242014 [TBL] [Abstract][Full Text] [Related]
12. Fluvial discharges of radiocaesium from watersheds contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident, Japan. Ueda S; Hasegawa H; Kakiuchi H; Akata N; Ohtsuka Y; Hisamatsu S J Environ Radioact; 2013 Apr; 118():96-104. PubMed ID: 23274616 [TBL] [Abstract][Full Text] [Related]
13. Particulate organic matter in rivers of Fukushima: An unexpected carrier phase for radiocesiums. Naulier M; Eyrolle-Boyer F; Boyer P; Métivier JM; Onda Y Sci Total Environ; 2017 Feb; 579():1560-1571. PubMed ID: 27923577 [TBL] [Abstract][Full Text] [Related]
14. Radioactive cesium dynamics derived from hydrographic observations in the Abukuma River Estuary, Japan. Kakehi S; Kaeriyama H; Ambe D; Ono T; Ito SI; Shimizu Y; Watanabe T J Environ Radioact; 2016 Mar; 153():1-9. PubMed ID: 26698826 [TBL] [Abstract][Full Text] [Related]
15. Predicting the long-term (137)Cs distribution in Fukushima after the Fukushima Dai-ichi nuclear power plant accident: a parameter sensitivity analysis. Yamaguchi M; Kitamura A; Oda Y; Onishi Y J Environ Radioact; 2014 Sep; 135():135-46. PubMed ID: 24836353 [TBL] [Abstract][Full Text] [Related]
16. Spatial variation in sedimentary radioactive cesium concentrations in Tokyo Bay following the Fukushima Daiichi Nuclear Power Plant accident. Kubo A; Tanabe K; Ito Y; Ishimaru T; Arakawa H; Kanda J Chemosphere; 2019 Nov; 235():550-555. PubMed ID: 31279117 [TBL] [Abstract][Full Text] [Related]
17. Occurrence and partition ratios of radiocesium in an urban river during dry and wet weather after the 2011 nuclear accident in Fukushima. Murakami M; Shibayama N; Sueki K; Mouri G; O H; Nomura M; Koibuchi Y; Oki T Water Res; 2016 Apr; 92():87-93. PubMed ID: 26841232 [TBL] [Abstract][Full Text] [Related]
18. Shipboard determination of radiocesium in seawater after the Fukushima accident: results from the 2011-2012 Russian expeditions to the Sea of Japan and western North Pacific Ocean. Ramzaev V; Nikitin A; Sevastyanov A; Artemiev G; Bruk G; Ivanov S J Environ Radioact; 2014 Sep; 135():13-24. PubMed ID: 24727550 [TBL] [Abstract][Full Text] [Related]
19. A modeling approach to estimate the Sakuma K; Nakanishi T; Yoshimura K; Kurikami H; Nanba K; Zheleznyak M J Environ Radioact; 2019 Nov; 208-209():106041. PubMed ID: 31494389 [TBL] [Abstract][Full Text] [Related]
20. Improving transfer functions to describe radiocesium wash-off fluxes for the Niida River by a Bayesian approach. Delmas M; Garcia-Sanchez L; Nicoulaud-Gouin V; Onda Y J Environ Radioact; 2017 Feb; 167():100-109. PubMed ID: 27843066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]