These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30947038)

  • 61. Magnetic particles encoding a suspension probe for ultra-sensitive and quantitative determination of atrazine.
    Zhao Z; Dou X; Luo J; Jin M; Qin J; Wang C; Yang S; Yang M
    J Pharm Biomed Anal; 2021 Feb; 195():113868. PubMed ID: 33406474
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Herbicide detection: A review of enzyme- and cell-based biosensors.
    Octobre G; Delprat N; Doumèche B; Leca-Bouvier B
    Environ Res; 2024 May; 249():118330. PubMed ID: 38341074
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A fast screening method for the presence of atrazine and other triazines in water using flow injection with chemiluminescent detection.
    Beale DJ; Porter NA; Roddick FA
    Talanta; 2009 Apr; 78(2):342-7. PubMed ID: 19203593
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Construction of the functionalized film of immobilized atrazine molecular on the surface of gold substrate and its characterization by FTIR-RAS].
    Du ZX; Li WX; Fu ZF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Nov; 25(11):1779-81. PubMed ID: 16499042
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecularly imprinted polymer for analysis of trace atrazine herbicide in water.
    Kueseng P; Noir ML; Mattiasson B; Thavarungkul P; Kanatharana P
    J Environ Sci Health B; 2009 Nov; 44(8):772-80. PubMed ID: 20183089
    [TBL] [Abstract][Full Text] [Related]  

  • 66. TriPleX™ waveguide-based fluorescence biosensor for multichannel environmental contaminants detection.
    Liu L; Shan D; Zhou X; Shi H; Song B; Falke F; Leinse A; Heideman R
    Biosens Bioelectron; 2018 May; 106():117-121. PubMed ID: 29414077
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application.
    Leu C; Singer H; Stamm C; Müller SR; Schwarzenbach RP
    Environ Sci Technol; 2004 Jul; 38(14):3835-41. PubMed ID: 15298190
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fluorescent biosensor using whole cells in an inorganic translucent matrix.
    Nguyen-Ngoc H; Tran-Minh C
    Anal Chim Acta; 2007 Jan; 583(1):161-5. PubMed ID: 17386541
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Tillage system, application rate, and extreme event effects on herbicide losses in surface runoff.
    Shipitalo MJ; Owens LB
    J Environ Qual; 2006; 35(6):2186-94. PubMed ID: 17071888
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Probing Contaminant-Induced Alterations in Chlorophyll Fluorescence by AC-Dielectrophoresis-Based 2D-Algal Array.
    Siebman C; Velev OD; Slaveykova VI
    Biosensors (Basel); 2018 Feb; 8(1):. PubMed ID: 29439453
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optimization of typical diffuse herbicide pollution control by soil amendment configurations under four levels of rainfall intensities.
    Ouyang W; Huang W; Wei P; Hao F; Yu Y
    J Environ Manage; 2016 Jun; 175():1-8. PubMed ID: 27017267
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Herbicides and herbicide degradation products in Upper Midwest agricultural streams during August base-flow conditions.
    Kalkhoff SJ; Lee KE; Porter SD; Terrio PJ; Thurman EM
    J Environ Qual; 2003; 32(3):1025-35. PubMed ID: 12809303
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Simultaneous assessment of sources, processes, and factors influencing herbicide losses to surface waters in a small agricultural catchment.
    Leu C; Singer H; Stamm C; Müller SR; Schwarzenbach RP
    Environ Sci Technol; 2004 Jul; 38(14):3827-34. PubMed ID: 15298189
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Tillage, intercrop, and controlled drainage-subirrigation influence atrazine, metribuzin, and metolachlor loss.
    Gaynor JD; Tan CS; Drury CF; Ng HY; Welacky TW; van Wesenbeeck IJ
    J Environ Qual; 2001; 30(2):561-72. PubMed ID: 11285918
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Diffuse atrazine pollution in German aquifers.
    Tappe W; Groeneweg J; Jantsch B
    Biodegradation; 2002; 13(1):3-10. PubMed ID: 12222953
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae.
    Eullaffroy P; Vernet G
    Water Res; 2003 May; 37(9):1983-90. PubMed ID: 12691882
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Construction and characterization of the direct piezoelectric immunosensor for atrazine operating in solution.
    Steegborn C; Skládal P
    Biosens Bioelectron; 1997; 12(1):19-27. PubMed ID: 8976049
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Occurrence, transportation, and distribution difference of typical herbicides from estuary to bay.
    Ouyang W; Zhang Y; Gu X; Tysklind M; Lin C; Wang B; Xin M
    Environ Int; 2019 Sep; 130():104858. PubMed ID: 31212164
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Runoff and leaching of atrazine and alachlor on a sandy soil as affected by application in sprinkler irrigation.
    Abdel-Rahman AR; Wauchope RD; Truman CC; Dowler CC
    J Environ Sci Health B; 1999 May; 34(3):381-96. PubMed ID: 10227190
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production.
    Brueggeman AJ; Kuehler D; Weeks DP
    Plant Biotechnol J; 2014 Sep; 12(7):894-902. PubMed ID: 24796724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.