BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

805 related articles for article (PubMed ID: 30947133)

  • 1. Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods.
    Li JJ; Qiao D; Zhao J; Weng GJ; Zhu J; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():247-255. PubMed ID: 30947133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gold-silver bimetallic nanocluster-based fluorescent probe for cysteine detection in milk and apple.
    Zhang B; Chen L; Zhang M; Deng C; Yang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121345. PubMed ID: 35561443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turn-on fluorescent sensing of glutathione S-transferase at near-infrared region based on FRET between gold nanoclusters and gold nanorods.
    Qin L; He X; Chen L; Zhang Y
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5965-71. PubMed ID: 25730735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A label-free turn-on-off fluorescent sensor for the sensitive detection of cysteine via blocking the Ag
    Li Y; Deng Y; Zhou X; Hu J
    Talanta; 2018 Mar; 179():742-752. PubMed ID: 29310302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid synthesis of Au/Ag bimetallic nanoclusters with highly biochemical stability and its applications for temperature and ratiometric pH sensing.
    Sun H; Qing T; He X; Shangguan J; Jia R; Bu H; Huang J; Wang K
    Anal Chim Acta; 2019 Sep; 1070():88-96. PubMed ID: 31103171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence red-shift of gold-silver nanoclusters upon interaction with cysteine and its application.
    Feng T; Chen Y; Feng B; Yan J; Di J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():97-103. PubMed ID: 30086452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel switchable fluorescent sensor for facile and highly sensitive detection of alkaline phosphatase activity in a water environment with gold/silver nanoclusters.
    Wang X; Liu Z; Zhao W; Sun J; Qian B; Wang X; Zeng H; Du D; Duan J
    Anal Bioanal Chem; 2019 Feb; 411(5):1009-1017. PubMed ID: 30552495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free fluorescent sensor for one-step lysozyme detection via positively charged gold nanorods.
    Zhang H; Liu P; Wang H; Ji X; Zhao M; Song Z
    Anal Bioanal Chem; 2021 Mar; 413(6):1541-1547. PubMed ID: 32705288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fluorescence "off-on-off" sensing platform based on bimetallic gold/silver nanoclusters for ascorbate oxidase activity monitoring.
    Wang M; Wang M; Wang G; Su X
    Analyst; 2020 Feb; 145(3):1001-1007. PubMed ID: 31830153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrinogen-templated gold nanoclusters for fluorometric determination of cysteine and mercury(II).
    Suo Z; Hou X; Hu Z; Liu Y; Xing F; Feng L
    Mikrochim Acta; 2019 Nov; 186(12):799. PubMed ID: 31741061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel FRET immunosensor for rapid and sensitive detection of dicofol based on bimetallic nanoclusters.
    Pan Y; Wei X
    Anal Chim Acta; 2022 Sep; 1224():340235. PubMed ID: 35998992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dually emitting gold-silver nanoclusters as viable ratiometric fluorescent probes for cysteine and arginine.
    Liu M; Li N; He Y; Ge Y; Song G
    Mikrochim Acta; 2018 Jan; 185(2):147. PubMed ID: 29594587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly selective sensor of cysteine with tunable sensitivity and detection window based on dual-emission Ag nanoclusters.
    Zhu J; Song X; Gao L; Li Z; Liu Z; Ding S; Zou S; He Y
    Biosens Bioelectron; 2014 Mar; 53():71-5. PubMed ID: 24121225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A "turn-on" fluorescent sensor for ozone detection in ambient air using protein-directed gold nanoclusters.
    Wu D; Qi W; Liu C; Zhang Q
    Anal Bioanal Chem; 2017 Apr; 409(10):2539-2546. PubMed ID: 28124753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel fluorometric and colorimetric sensor for iodide determination using DNA-templated gold/silver nanoclusters.
    Li Z; Liu R; Xing G; Wang T; Liu S
    Biosens Bioelectron; 2017 Oct; 96():44-48. PubMed ID: 28460331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver-enhanced fluorescence of bimetallic Au/Ag nanoclusters as ultrasensitive sensing probe for the detection of folic acid.
    Fereja SL; Li P; Guo J; Fang Z; Zhang Z; Zhuang Z; Zhang X; Liu K; Chen W
    Talanta; 2021 Oct; 233():122469. PubMed ID: 34215104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A far-red FRET fluorescent probe for ratiometric detection of l-cysteine based on carbon dots and N-acetyl-l-cysteine-capped gold nanoparticles.
    Dong W; Wang R; Gong X; Liang W; Dong C
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 213():90-96. PubMed ID: 30684884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer.
    Lu X; Dong X; Zhang K; Han X; Fang X; Zhang Y
    Analyst; 2013 Jan; 138(2):642-50. PubMed ID: 23172079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced electrochemiluminescence of gold nanoclusters via silver doping and their application for ultrasensitive detection of dopamine.
    Tang Y; Xu J; Xiong C; Xiao Y; Zhang X; Wang S
    Analyst; 2019 Apr; 144(8):2643-2648. PubMed ID: 30839993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.