These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30947278)

  • 21. Effects of sustained inflation pressure during neonatal cardiopulmonary resuscitation of asphyxiated piglets.
    Shim GH; Kim SY; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    PLoS One; 2020; 15(6):e0228693. PubMed ID: 32574159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chest compressions superimposed with sustained inflations during cardiopulmonary resuscitation in asphyxiated pediatric piglets.
    Morin CMD; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Pediatr Res; 2024 Mar; 95(4):988-995. PubMed ID: 36932182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulated mouth-to-mouth ventilation and chest compressions (bystander cardiopulmonary resuscitation) improves outcome in a swine model of prehospital pediatric asphyxial cardiac arrest.
    Berg RA; Hilwig RW; Kern KB; Babar I; Ewy GA
    Crit Care Med; 1999 Sep; 27(9):1893-9. PubMed ID: 10507615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A randomized, blinded trial of high-dose epinephrine versus standard-dose epinephrine in a swine model of pediatric asphyxial cardiac arrest.
    Berg RA; Otto CW; Kern KB; Hilwig RW; Sanders AB; Henry CP; Ewy GA
    Crit Care Med; 1996 Oct; 24(10):1695-700. PubMed ID: 8874308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of varying chest compression depths on carotid blood flow and blood pressure in asphyxiated piglets.
    Bruckner M; O'Reilly M; Lee TF; Neset M; Cheung PY; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2021 Sep; 106(5):553-556. PubMed ID: 33541920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Piglet Perinatal Asphyxia Model to Study Cardiac Injury and Hemodynamics after Cardiac Arrest, Resuscitation, and the Return of Spontaneous Circulation.
    Stenersen EO; Olsen A; Melheim M; Solberg R; Dannevig I; Schmölzer G; Cheung PY; Nakstad B; Saugstad OD; Rønnestad A; Solevåg AL
    J Vis Exp; 2023 Jan; (191):. PubMed ID: 36715405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Randomized, Controlled Animal Study: 21% or 100% Oxygen during Cardiopulmonary Resuscitation in Asphyxiated Infant Piglets.
    Nyame S; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Children (Basel); 2022 Oct; 9(11):. PubMed ID: 36360329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of combination dopamine and epinephrine treatment with high-dose dopamine alone in asphyxiated newborn piglets after resuscitation.
    Manouchehri N; Bigam DL; Churchill T; Rayner D; Joynt C; Cheung PY
    Pediatr Res; 2013 Apr; 73(4 Pt 1):435-42. PubMed ID: 23344679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vasopressin versus epinephrine during neonatal cardiopulmonary resuscitation of asphyxiated post-transitional piglets.
    O'Reilly M; Lee TF; Cheung PY; Schmölzer GM
    Resusc Plus; 2023 Sep; 15():100427. PubMed ID: 37519409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Periodic acceleration (pGz) CPR in a swine model of asphyxia induced cardiac arrest. Short-term hemodynamic comparisons.
    Adams JA; Bassuk JA; Arias J; Wu H; Jorapur V; Lamas GA; Kurlansky P
    Resuscitation; 2008 Apr; 77(1):132-8. PubMed ID: 18164796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous chest compressions with asynchronous ventilations increase carotid blood flow in the perinatal asphyxiated lamb model.
    Vali P; Lesneski A; Hardie M; Alhassen Z; Chen P; Joudi H; Sankaran D; Lakshminrusimha S
    Pediatr Res; 2021 Oct; 90(4):752-758. PubMed ID: 33469187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cardiopulmonary resuscitation with chest compressions during sustained inflations: a new technique of neonatal resuscitation that improves recovery and survival in a neonatal porcine model.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Qin S; Bigam DL; Cheung PY
    Circulation; 2013 Dec; 128(23):2495-503. PubMed ID: 24088527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One oxygen breath shortened the time to return of spontaneous circulation in severely asphyxiated piglets.
    Linner R; Cunha-Goncalves D; Perez-de-Sa V
    Acta Paediatr; 2017 Oct; 106(10):1556-1563. PubMed ID: 28513002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of chest compressions on cardiovascular and cerebral hemodynamics in asphyxiated near-term lambs.
    Sobotka KS; Polglase GR; Schmölzer GM; Davis PG; Klingenberg C; Hooper SB
    Pediatr Res; 2015 Oct; 78(4):395-400. PubMed ID: 26086644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Outcomes from low versus high-flow cardiopulmonary resuscitation in a swine model of cardiac arrest.
    Halperin HR; Lee K; Zviman M; Illindala U; Lardo A; Kolandaivelu A; Paradis NA
    Am J Emerg Med; 2010 Feb; 28(2):195-202. PubMed ID: 20159390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/Asystole) causes of cardiac arrest.
    Ahn A; Nasir A; Malik H; D'Orazi F; Parnia S
    Resuscitation; 2013 Dec; 84(12):1713-6. PubMed ID: 23948447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison between synchronized and non-synchronized ventilation and between guided and non-guided chest compressions during resuscitation in a pediatric animal model after asphyxial cardiac arrest.
    Manrique G; García M; Fernández SN; González R; Solana MJ; López J; Urbano J; López-Herce J
    PLoS One; 2019; 14(7):e0219660. PubMed ID: 31318890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ECG changes during resuscitation of patients with initial pulseless electrical activity are associated with return of spontaneous circulation.
    Skjeflo GW; Nordseth T; Loennechen JP; Bergum D; Skogvoll E
    Resuscitation; 2018 Jun; 127():31-36. PubMed ID: 29621571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of outcomes between pulseless electrical activity by electrocardiography and pulseless myocardial activity by echocardiography in out-of-hospital cardiac arrest; secondary analysis from a large, prospective study.
    Gaspari R; Weekes A; Adhikari S; Noble VE; Nomura JT; Theodoro D; Woo MY; Atkinson P; Blehar D; Brown SM; Caffery T; Haines C; Lam S; Lanspa M; Lewis M; Liebmann O; Limkakeng A; Platz E; Moore C; Raio C
    Resuscitation; 2021 Dec; 169():167-172. PubMed ID: 34798178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ECG patterns in early pulseless electrical activity-Associations with aetiology and survival of in-hospital cardiac arrest.
    Bergum D; Skjeflo GW; Nordseth T; Mjølstad OC; Haugen BO; Skogvoll E; Loennechen JP
    Resuscitation; 2016 Jul; 104():34-9. PubMed ID: 27143124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.