BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30947307)

  • 1. Effects of drought-stress on seed germination and growth physiology of quinclorac-resistant Echinochloa crusgalli.
    Wu LM; Fang Y; Yang HN; Bai LY
    PLoS One; 2019; 14(4):e0214480. PubMed ID: 30947307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinclorac resistance: a concerted hormonal and enzymatic effort in Echinochloa phyllopogon.
    Yasuor H; Milan M; Eckert JW; Fischer AJ
    Pest Manag Sci; 2012 Jan; 68(1):108-15. PubMed ID: 21717565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A resistance mechanism dependent upon the inhibition of ethylene biosynthesis.
    Xu J; Lv B; Wang Q; Li J; Dong L
    Pest Manag Sci; 2013 Dec; 69(12):1407-14. PubMed ID: 23457050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance to quinclorac caused by the enhanced ability to detoxify cyanide and its molecular mechanism in Echinochloa crus-galli var. zelayensis.
    Gao Y; Pan L; Sun Y; Zhang T; Dong L; Li J
    Pestic Biochem Physiol; 2017 Nov; 143():231-238. PubMed ID: 29183597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene Biosynthesis Inhibition Combined with Cyanide Degradation Confer Resistance to Quinclorac in
    Zia Ul Haq M; Zhang Z; Wei J; Qiang S
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32106618
    [No Abstract]   [Full Text] [Related]  

  • 6. Quinclorac resistance induced by the suppression of the expression of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase genes in Echinochloa crus-galli var. zelayensis.
    Gao Y; Li J; Pan X; Liu D; Napier R; Dong L
    Pestic Biochem Physiol; 2018 Apr; 146():25-32. PubMed ID: 29626989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and mRNA expression profile of glutamate receptor-like gene in quinclorac-resistant and susceptible Echinochloa crus-galli.
    Li G; Wu S; Cai L; Wang Q; Zhao X; Wu C
    Gene; 2013 Dec; 531(2):489-95. PubMed ID: 24036427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple-herbicide resistance in Echinochloa crus-galli var. formosensis, an allohexaploid weed species, in dry-seeded rice.
    Iwakami S; Hashimoto M; Matsushima K; Watanabe H; Hamamura K; Uchino A
    Pestic Biochem Physiol; 2015 Mar; 119():1-8. PubMed ID: 25868810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is the protection of photosynthesis related to the mechanism of quinclorac resistance in Echinochloa crus-galli var. zelayensis?
    Gao Y; Pan X; Sun X; Li J; Dong L
    Gene; 2019 Jan; 683():133-148. PubMed ID: 30316919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seed germination ecology of Echinochloa glabrescens and its implication for management in rice (Oryza sativa L.).
    Opeña JL; Chauhan BS; Baltazar AM
    PLoS One; 2014; 9(3):e92261. PubMed ID: 24642568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Action Mechanism of Fenclorim on Rice and
    Hu L; Huang Y; Ding B; Cai R; Bai L
    J Agric Food Chem; 2021 Jun; 69(21):5830-5839. PubMed ID: 34011154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Resistance to Quinclorac in Multiple-Resistant
    Rangani G; Rouse CE; Saski C; Noorai RE; Shankar V; Lawton-Rauh AL; Werle IS; Roma-Burgos N
    Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328069
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of quintrione and quinclorac on mechanism of action.
    Wang Z; Wang H; Li J; Yu J; Lin H; Dong L
    Pestic Biochem Physiol; 2022 Feb; 181():105007. PubMed ID: 35082030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring quinclorac resistance mechanisms in Echinochloa crus-pavonis from China.
    Yang X; Han H; Cao J; Li Y; Yu Q; Powles SB
    Pest Manag Sci; 2021 Jan; 77(1):194-201. PubMed ID: 32652760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quinclorac resistance in Echinochloa phyllopogon is associated with reduced ethylene synthesis rather than enhanced cyanide detoxification by β-cyanoalanine synthase.
    Chayapakdee P; Sunohara Y; Endo M; Yamaguchi T; Fan L; Uchino A; Matsumoto H; Iwakami S
    Pest Manag Sci; 2020 Apr; 76(4):1195-1204. PubMed ID: 31659851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass (Echinochloa crus-galli L.).
    Yang X; Zhang Z; Gu T; Dong M; Peng Q; Bai L; Li Y
    J Proteomics; 2017 Jan; 150():160-169. PubMed ID: 27667388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target-Site and Metabolic Resistance Mechanisms to Penoxsulam in Barnyardgrass (
    Fang J; Zhang Y; Liu T; Yan B; Li J; Dong L
    J Agric Food Chem; 2019 Jul; 67(29):8085-8095. PubMed ID: 31265279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-site mutation associated with cross-resistance to ALS-inhibiting herbicides in late watergrass (Echinochloa oryzicola Vasing.).
    Kaloumenos NS; Chatzilazaridou SL; Mylona PV; Polidoros AN; Eleftherohorinos IG
    Pest Manag Sci; 2013 Jul; 69(7):865-73. PubMed ID: 23225344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative control of two biotypes of Echinochloa phyllopogon susceptible and resistant to fenoxaprop-ethyl.
    Ruiz-Santaella JP; Fisher AJ; De Prado R
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):403-7. PubMed ID: 15149136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of allelopathic potential and quantification of momilactone A,B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds.
    Chung IM; Kim JT; Kim SH
    J Agric Food Chem; 2006 Apr; 54(7):2527-36. PubMed ID: 16569039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.