These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30947425)

  • 1. GOF/LOF knowledge inference with tensor decomposition in support of high order link discovery for gene, mutation and disease.
    Zhou KY; Wang YX; Zhang S; Gachloo M; Kim JD; Luo Q; Cohen KB; Xia JB
    Math Biosci Eng; 2019 Feb; 16(3):1376-1391. PubMed ID: 30947425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting associations among drugs, targets and diseases by tensor decomposition for drug repositioning.
    Wang R; Li S; Cheng L; Wong MH; Leung KS
    BMC Bioinformatics; 2019 Dec; 20(Suppl 26):628. PubMed ID: 31839008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing.
    Zhao K; So HC
    Methods Mol Biol; 2019; 1903():219-237. PubMed ID: 30547445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of genomic features in the classification of loss- and gain-of-function mutation.
    Jung S; Lee S; Kim S; Nam H
    BMC Med Inform Decis Mak; 2015; 15 Suppl 1(Suppl 1):S6. PubMed ID: 26043747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NTD-DR: Nonnegative tensor decomposition for drug repositioning.
    Jamali AA; Tan Y; Kusalik A; Wu FX
    PLoS One; 2022; 17(7):e0270852. PubMed ID: 35862409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omics Data Integration and Analysis for Systems Pharmacology.
    Lim H; Xie L
    Methods Mol Biol; 2019; 1939():199-214. PubMed ID: 30848463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding chemical drugs for genetic diseases.
    Sun HY; Hou TJ; Zhang HY
    Drug Discov Today; 2014 Dec; 19(12):1836-40. PubMed ID: 25256778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Drug-Target Network-Based Supervised Machine Learning Repurposing Method Allowing the Use of Multiple Heterogeneous Information Sources.
    Nascimento ACA; PrudĂȘncio RBC; Costa IG
    Methods Mol Biol; 2019; 1903():281-289. PubMed ID: 30547449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Machine-Learning-Based Drug Repurposing Approach Using Baseline Regularization.
    Kuang Z; Bao Y; Thomson J; Caldwell M; Peissig P; Stewart R; Willett R; Page D
    Methods Mol Biol; 2019; 1903():255-267. PubMed ID: 30547447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hidden discriminative features extraction for supervised high-order time series modeling.
    Nguyen NA; Yang HJ; Kim S
    Comput Biol Med; 2016 Nov; 78():81-90. PubMed ID: 27665534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Sequentially Truncated Higher Order Singular Value Decomposition-Based Algorithm for Tensor Completion.
    Fang Z; Yang X; Han L; Liu X
    IEEE Trans Cybern; 2019 May; 49(5):1956-1967. PubMed ID: 29993938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CYP2C19 LOF and GOF-Guided Antiplatelet Therapy in Patients with Acute Coronary Syndrome: A Cost-Effectiveness Analysis.
    Jiang M; You JH
    Cardiovasc Drugs Ther; 2017 Feb; 31(1):39-49. PubMed ID: 27924429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How good are publicly available web services that predict bioactivity profiles for drug repurposing?
    Murtazalieva KA; Druzhilovskiy DS; Goel RK; Sastry GN; Poroikov VV
    SAR QSAR Environ Res; 2017 Oct; 28(10):843-862. PubMed ID: 29183230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing.
    Lim H; Poleksic A; Yao Y; Tong H; He D; Zhuang L; Meng P; Xie L
    PLoS Comput Biol; 2016 Oct; 12(10):e1005135. PubMed ID: 27716836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-Based Drug Repositioning: Approaches, Resources, and Research Directions.
    Alaimo S; Pulvirenti A
    Methods Mol Biol; 2019; 1903():97-113. PubMed ID: 30547438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repurposing Drugs in Oncology: Next Steps.
    Verbaanderd C; Meheus L; Huys I; Pantziarka P
    Trends Cancer; 2017 Aug; 3(8):543-546. PubMed ID: 28780930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction.
    Zong N; Wong RSN; Ngo V
    Methods Mol Biol; 2019; 1903():317-328. PubMed ID: 30547451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
    Chen X; Yin J; Qu J; Huang L
    PLoS Comput Biol; 2018 Aug; 14(8):e1006418. PubMed ID: 30142158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Application of Computational Drug Repurposing Based on Transcriptomic Signatures.
    Karatzas E; Kolios G; Spyrou GM
    Methods Mol Biol; 2019; 1903():149-177. PubMed ID: 30547441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.