These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 30947431)

  • 1. Global stability of an age-structured epidemic model with general Lyapunov functional.
    Chekroun A; Frioui MN; Kuniya T; Touaoula TM
    Math Biosci Eng; 2019 Feb; 16(3):1525-1553. PubMed ID: 30947431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global stability of an epidemic model with delay and general nonlinear incidence.
    McCluskey CC
    Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global stability of multi-group SIR epidemic model with group mixing and human movement.
    Cui QQ
    Math Biosci Eng; 2019 Mar; 16(4):1798-1814. PubMed ID: 31137186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global stability properties of a class of renewal epidemic models.
    Meehan MT; Cocks DG; Müller J; McBryde ES
    J Math Biol; 2019 May; 78(6):1713-1725. PubMed ID: 30737545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase.
    Adimy M; Chekroun A; Ferreira CP
    Math Biosci Eng; 2019 Nov; 17(2):1329-1354. PubMed ID: 32233581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis.
    Kumar A; Goel K; Nilam
    Theory Biosci; 2020 Feb; 139(1):67-76. PubMed ID: 31493204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and bifurcations in an epidemic model with varying immunity period.
    Blyuss KB; Kyrychko YN
    Bull Math Biol; 2010 Feb; 72(2):490-505. PubMed ID: 19898905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global stability for epidemic model with constant latency and infectious periods.
    Huang G; Beretta E; Takeuchi Y
    Math Biosci Eng; 2012 Apr; 9(2):297-312. PubMed ID: 22901066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse.
    Ren S
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1337-1360. PubMed ID: 29161864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global stability analysis of SEIR model with holling type II incidence function.
    Safi MA; Garba SM
    Comput Math Methods Med; 2012; 2012():826052. PubMed ID: 23091562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate.
    Huang S; Jiang J
    Math Biosci Eng; 2016 Aug; 13(4):723-739. PubMed ID: 27775383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of SIR epidemic models with nonlinear incidence rate and treatment.
    Hu Z; Ma W; Ruan S
    Math Biosci; 2012 Jul; 238(1):12-20. PubMed ID: 22516532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global stability of the steady states of an epidemic model incorporating intervention strategies.
    Kang Y; Wang W; Cai Y
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1071-1089. PubMed ID: 29161851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling diseases with relapse and nonlinear incidence of infection: a multi-group epidemic model.
    Wang J; Pang J; Liu X
    J Biol Dyn; 2014; 8(1):99-116. PubMed ID: 24963980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An SIR epidemic model with vaccination in a patchy environment.
    Cui Q; Qiu Z; Ding L
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1141-1157. PubMed ID: 29161854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global dynamics of a general class of multi-group epidemic models with latency and relapse.
    Feng X; Teng Z; Zhang F
    Math Biosci Eng; 2015 Feb; 12(1):99-115. PubMed ID: 25811334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate.
    Huang G; Takeuchi Y; Ma W; Wei D
    Bull Math Biol; 2010 Jul; 72(5):1192-207. PubMed ID: 20091354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global dynamics of an epidemiological model with age of infection and disease relapse.
    Xu R
    J Biol Dyn; 2018 Dec; 12(1):118-145. PubMed ID: 29198167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.