These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 30947431)

  • 21. Transmission Dynamics of an SIS Model with Age Structure on Heterogeneous Networks.
    Chen S; Small M; Tao Y; Fu X
    Bull Math Biol; 2018 Aug; 80(8):2049-2087. PubMed ID: 29948881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures.
    Kuniya T; Muroya Y; Enatsu Y
    Math Biosci Eng; 2014 Dec; 11(6):1375-93. PubMed ID: 25365599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation.
    Xu J; Zhou Y
    Math Biosci Eng; 2015 Oct; 12(5):1083-106. PubMed ID: 26280186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mathematical and numerical study of a SIR epidemic model with time delay, nonlinear incidence and treatment rates.
    Goel K; Nilam
    Theory Biosci; 2019 Nov; 138(2):203-213. PubMed ID: 30666514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An age-structured vector-borne disease model with horizontal transmission in the host.
    Wang X; Chen Y
    Math Biosci Eng; 2018 Oct; 15(5):1099-1116. PubMed ID: 30380301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate.
    Yang J; Chen Y
    J Biol Dyn; 2018 Dec; 12(1):789-816. PubMed ID: 30317933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An SIR pairwise epidemic model with infection age and demography.
    Jing W; Jin Z; Zhang J
    J Biol Dyn; 2018 Dec; 12(1):486-508. PubMed ID: 29855227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global dynamics of an age-structured malaria model with prevention.
    Guo ZK; Huo HF; Xiang H
    Math Biosci Eng; 2019 Feb; 16(3):1625-1653. PubMed ID: 30947436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epidemic dynamics on semi-directed complex networks.
    Zhang X; Sun GQ; Zhu YX; Ma J; Jin Z
    Math Biosci; 2013 Dec; 246(2):242-51. PubMed ID: 24140877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Qualitative analysis of generalized multistage epidemic model with immigration.
    Gómez MC; Rubio FA; Mondragón EI
    Math Biosci Eng; 2023 Jul; 20(9):15765-15780. PubMed ID: 37919988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion.
    Liu P; Li HX
    Math Biosci Eng; 2020 Oct; 17(6):7248-7273. PubMed ID: 33378896
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global dynamics of alcoholism epidemic model with distributed delays.
    Djillali S; Bentout S; Touaoula TM; Tridane A
    Math Biosci Eng; 2021 Sep; 18(6):8245-8256. PubMed ID: 34814298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages.
    Wang X; Liu S
    Math Biosci Eng; 2012 Jul; 9(3):685-95. PubMed ID: 22881032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics and asymptotic profiles of steady states of an SIRS epidemic model in spatially heterogenous environment.
    Zhang BX; Cai YL; Wang BX; Wang WM
    Math Biosci Eng; 2019 Nov; 17(1):893-909. PubMed ID: 31731383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global stability analysis of a delayed susceptible-infected-susceptible epidemic model.
    Paulhus C; Wang XS
    J Biol Dyn; 2015; 9 Suppl 1():45-50. PubMed ID: 24978018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamical analysis of an age-structured multi-group SIVS epidemic model.
    Yang J; Xu R; Luo X
    Math Biosci Eng; 2019 Jan; 16(2):636-666. PubMed ID: 30861660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epidemic models for complex networks with demographics.
    Jin Z; Sun G; Zhu H
    Math Biosci Eng; 2014 Dec; 11(6):1295-317. PubMed ID: 25365609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of infection age on an SIS epidemic model on complex networks.
    Yang J; Chen Y; Xu F
    J Math Biol; 2016 Nov; 73(5):1227-1249. PubMed ID: 27007281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex Dynamics of an SIR Epidemic Model with Saturated Incidence Rate and Treatment.
    Jana S; Nandi SK; Kar TK
    Acta Biotheor; 2016 Mar; 64(1):65-84. PubMed ID: 26566620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes.
    Wang J; Zhang R; Kuniya T
    J Biol Dyn; 2015; 9():73-101. PubMed ID: 25689314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.