These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30948006)

  • 41. Characterization of the SpHE promoter that is spatially regulated along the animal-vegetal axis of the sea urchin embryo.
    Wei Z; Angerer LM; Gagnon ML; Angerer RC
    Dev Biol; 1995 Sep; 171(1):195-211. PubMed ID: 7556896
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The old man and the sea urchin genome: theory and data in the work of Eric Davidson, 1969-2006.
    García-Deister V
    Hist Philos Life Sci; 2011; 33(2):147-63. PubMed ID: 22288333
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inference of Developmental Gene Regulatory Networks Beyond Classical Model Systems: New Approaches in the Post-genomic Era.
    Fernandez-Valverde SL; Aguilera F; Ramos-Díaz RA
    Integr Comp Biol; 2018 Oct; 58(4):640-653. PubMed ID: 29917089
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two cis elements collaborate to spatially repress transcription from a sea urchin promoter.
    Frudakis TN; Wilt F
    Dev Biol; 1995 Nov; 172(1):230-41. PubMed ID: 7589803
    [TBL] [Abstract][Full Text] [Related]  

  • 45. USF in the Lytechinus sea urchin embryo may act as a transcriptional repressor in non-aboral ectoderm cells for the cell lineage-specific expression of the LpS1 genes.
    Seid CA; George JM; Sater AK; Kozlowski MT; Lee H; Govindarajan V; Ramachandran RK; Tomlinson CR
    J Mol Biol; 1996 Nov; 264(1):7-19. PubMed ID: 8950263
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation.
    Romano LA; Wray GA
    Development; 2003 Sep; 130(17):4187-99. PubMed ID: 12874137
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High throughput technologies for the functional discovery of mammalian enhancers: new approaches for understanding transcriptional regulatory network dynamics.
    Dailey L
    Genomics; 2015 Sep; 106(3):151-158. PubMed ID: 26072436
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology.
    Ben-Tabou de-Leon S; Davidson EH
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(2):237-246. PubMed ID: 20228891
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional characterization of the enhancer blocking element of the sea urchin early histone gene cluster reveals insulator properties and three essential cis-acting sequences.
    Melfi R; Palla F; Di Simone P; Alessandro C; Calì L; Anello L; Spinelli G
    J Mol Biol; 2000 Dec; 304(5):753-63. PubMed ID: 11124024
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specification in the sea urchin embryo.
    Range R; Lepage T
    Dev Biol; 2011 Sep; 357(2):440-9. PubMed ID: 21782809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing regulatory information in developmental gene regulatory networks.
    Peter IS; Davidson EH
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5862-5869. PubMed ID: 28584110
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Post-transcriptional regulation of factors important for the germ line.
    Oulhen N; Morita S; Wessel GM
    Curr Top Dev Biol; 2022; 146():49-78. PubMed ID: 35152986
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A positive cis-regulatory element with a bicoid target site lies within the sea urchin Spec2a enhancer.
    Gan L; Klein WH
    Dev Biol; 1993 May; 157(1):119-32. PubMed ID: 8097732
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modular cis-regulatory organization of developmentally expressed genes: two genes transcribed territorially in the sea urchin embryo, and additional examples.
    Kirchhamer CV; Yuh CH; Davidson EH
    Proc Natl Acad Sci U S A; 1996 Sep; 93(18):9322-8. PubMed ID: 8790328
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional cis-regulatory genomics for systems biology.
    Nam J; Dong P; Tarpine R; Istrail S; Davidson EH
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3930-5. PubMed ID: 20142491
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deciphering the underlying mechanism of specification and differentiation: the sea urchin gene regulatory network.
    Ben-Tabou de-Leon S; Davidson EH
    Sci STKE; 2006 Nov; 2006(361):pe47. PubMed ID: 17106076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The surprising complexity of the transcriptional regulation of the spdri gene reveals the existence of new linkages inside sea urchin's PMC and Oral Ectoderm Gene Regulatory Networks.
    Mahmud AA; Amore G
    Dev Biol; 2008 Oct; 322(2):425-34. PubMed ID: 18718463
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Methods for toxicology studies in echinoderm embryos and larvae.
    Torres-Duarte C; Vines CA; Fairbairn E; Cherr GN
    Methods Cell Biol; 2019; 150():411-426. PubMed ID: 30777186
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multicolor labeling in developmental gene regulatory network analysis.
    Sethi AJ; Angerer RC; Angerer LM
    Methods Mol Biol; 2014; 1128():249-62. PubMed ID: 24567220
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional characterization of Ets-binding sites in the sea urchin embryo: three base pair conversions redirect expression from mesoderm to ectoderm and endoderm.
    Consales C; Arnone MI
    Gene; 2002 Apr; 287(1-2):75-81. PubMed ID: 11992725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.