BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30948011)

  • 1. Expression of exogenous mRNAs to study gene function in echinoderm embryos.
    Molina MD; Gache C; Lepage T
    Methods Cell Biol; 2019; 151():239-282. PubMed ID: 30948011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of exogenous mRNAs to study gene function in the sea urchin embryo.
    Lepage T; Gache C
    Methods Cell Biol; 2004; 74():677-97. PubMed ID: 15575626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole mount in situ hybridization techniques for analysis of the spatial distribution of mRNAs in sea urchin embryos and early larvae.
    Erkenbrack EM; Croce JC; Miranda E; Gautam S; Martinez-Bartolome M; Yaguchi S; Range RC
    Methods Cell Biol; 2019; 151():177-196. PubMed ID: 30948007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of microRNA functions.
    Remsburg C; Konrad K; Sampilo NF; Song JL
    Methods Cell Biol; 2019; 151():323-334. PubMed ID: 30948016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbations to the hedgehog pathway in sea urchin embryos.
    Warner JF; McClay DR
    Methods Mol Biol; 2014; 1128():211-21. PubMed ID: 24567217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gene regulatory control of sea urchin gastrulation.
    Ettensohn CA
    Mech Dev; 2020 Jun; 162():103599. PubMed ID: 32119908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for the experimental and computational analysis of gene regulatory networks in sea urchins.
    Peter IS
    Methods Cell Biol; 2019; 151():89-113. PubMed ID: 30948033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cis-Regulatory analysis for later phase of anterior neuroectoderm-specific foxQ2 expression in sea urchin embryos.
    Yamazaki A; Yamamoto A; Yaguchi J; Yaguchi S
    Genesis; 2019 Jun; 57(6):e23302. PubMed ID: 31025827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres.
    Revilla-i-Domingo R; Oliveri P; Davidson EH
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12383-8. PubMed ID: 17636127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional studies of regulatory genes in the sea urchin embryo.
    Cavalieri V; Di Bernardo M; Spinelli G
    Methods Mol Biol; 2009; 518():175-88. PubMed ID: 19085138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel sea urchin nuclear receptor encoded by alternatively spliced maternal RNAs.
    Kontrogianni-Konstantopoulos A; Vlahou A; Vu D; Flytzanis CN
    Dev Biol; 1996 Aug; 177(2):371-82. PubMed ID: 8806817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sea urchin kinome: a first look.
    Bradham CA; Foltz KR; Beane WS; Arnone MI; Rizzo F; Coffman JA; Mushegian A; Goel M; Morales J; Geneviere AM; Lapraz F; Robertson AJ; Kelkar H; Loza-Coll M; Townley IK; Raisch M; Roux MM; Lepage T; Gache C; McClay DR; Manning G
    Dev Biol; 2006 Dec; 300(1):180-93. PubMed ID: 17027740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex cis-regulatory analysis.
    Nam J
    Methods Cell Biol; 2019; 151():159-176. PubMed ID: 30948006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meis transcription factor maintains the neurogenic ectoderm and regulates the anterior-posterior patterning in embryos of a sea urchin, Hemicentrotus pulcherrimus.
    Yaguchi J; Yamazaki A; Yaguchi S
    Dev Biol; 2018 Dec; 444(1):1-8. PubMed ID: 30266259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene.
    Coffman JA; Dickey-Sims C; Haug JS; McCarthy JJ; Robertson AJ
    BMC Biol; 2004 May; 2():6. PubMed ID: 15132741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmentally-regulated interaction of a transcription factor complex containing CDP/cut with the early histone H3 gene promoter of the sea urchin Tetrapygus niger is associated with changes in chromatin structure and gene expression.
    Medina R; Paredes R; Puchi M; Imschenetzky M; Montecino M
    Gene; 2001 Jul; 272(1-2):237-48. PubMed ID: 11470530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo.
    Range RC; Venuti JM; McClay DR
    Dev Biol; 2005 Mar; 279(1):252-67. PubMed ID: 15708573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.