BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30948012)

  • 41. Maternal factors regulating symmetry breaking and dorsal-ventral axis formation in the sea urchin embryo.
    Molina MD; Lepage T
    Curr Top Dev Biol; 2020; 140():283-316. PubMed ID: 32591077
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sea urchin small RNA ribonucleoprotein particles: identification, synthesis, and subcellular localization during early embryonic development.
    LeBlanc JM; Infante AA
    Mol Reprod Dev; 1992 Feb; 31(2):96-105. PubMed ID: 1534665
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of enzyme synthesis in early sea urchin development: aryl sulfatase activity in normal and hybrid embryos.
    Fedecka-Bruner B; Anderson M; Epel D
    Dev Biol; 1971 Aug; 25(4):655-71. PubMed ID: 5126203
    [No Abstract]   [Full Text] [Related]  

  • 44. Introduction of cloned DNA into sea urchin egg cytoplasm: replication and persistence during embryogenesis.
    McMahon AP; Flytzanis CN; Hough-Evans BR; Katula KS; Britten RJ; Davidson EH
    Dev Biol; 1985 Apr; 108(2):420-30. PubMed ID: 3000854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of microRNA functions.
    Remsburg C; Konrad K; Sampilo NF; Song JL
    Methods Cell Biol; 2019; 151():323-334. PubMed ID: 30948016
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple levels of regulation of protein synthesis at fertilization in sea urchin eggs.
    Winkler MM; Nelson EM; Lashbrook C; Hershey JW
    Dev Biol; 1985 Feb; 107(2):290-300. PubMed ID: 3972155
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrophoretic analysis of the stored histone pool in unfertilized sea urchin eggs: quantification and identification by antibody binding.
    Salik J; Herlands L; Hoffmann HP; Poccia D
    J Cell Biol; 1981 Aug; 90(2):385-95. PubMed ID: 7197275
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Maternal exposure to estradiol and endocrine disrupting compounds alters the sensitivity of sea urchin embryos and the expression of an orphan steroid receptor.
    Roepke TA; Chang ES; Cherr GN
    J Exp Zool A Comp Exp Biol; 2006 Oct; 305(10):830-41. PubMed ID: 16823834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.
    Lin CY; Su YH
    Dev Biol; 2016 Jan; 409(2):420-8. PubMed ID: 26632489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Translational regulation of histone synthesis in the sea urchin strongylocentrotus purpuratus.
    Herlands L; Allfrey VG; Poccia D
    J Cell Biol; 1982 Jul; 94(1):219-23. PubMed ID: 7119016
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rho-kinase in sea urchin eggs and embryos.
    Aguirre-Armenta B; López-Godínez J; Martínez-Cadena G; García-Soto J
    Dev Growth Differ; 2011 Jun; 53(5):704-14. PubMed ID: 21671918
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of cap methylation in the translational activation of stored maternal histone mRNA in sea urchin embryos.
    Caldwell DC; Emerson CP
    Cell; 1985 Sep; 42(2):691-700. PubMed ID: 2411426
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression pattern of polyketide synthase-2 during sea urchin development.
    Beeble A; Calestani C
    Gene Expr Patterns; 2012; 12(1-2):7-10. PubMed ID: 22001775
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The sea urchin multicatalytic protease: purification, biochemical analysis, subcellular distribution, and relationship to snRNPs.
    Grainger JL; Winkler MM
    J Cell Biol; 1989 Aug; 109(2):675-83. PubMed ID: 2527240
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The five cleavage-stage (CS) histones of the sea urchin are encoded by a maternally expressed family of replacement histone genes: functional equivalence of the CS H1 and frog H1M (B4) proteins.
    Mandl B; Brandt WF; Superti-Furga G; Graninger PG; Birnstiel ML; Busslinger M
    Mol Cell Biol; 1997 Mar; 17(3):1189-200. PubMed ID: 9032246
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiplex cis-regulatory analysis.
    Nam J
    Methods Cell Biol; 2019; 151():159-176. PubMed ID: 30948006
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A factor in sea urchin eggs inhibits transcription in isolated nuclei by sea urchin RNA polymerase III.
    Morris GF; Marzluff WF
    Biochemistry; 1983 Feb; 22(3):645-53. PubMed ID: 6188481
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cost of protein synthesis and energy allocation during development of antarctic sea urchin embryos and larvae.
    Pace DA; Manahan DT
    Biol Bull; 2007 Apr; 212(2):115-29. PubMed ID: 17438204
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Embryonic and post-embryonic utilization and subcellular localization of the nuclear receptor SpSHR2 in the sea urchin.
    Kontrogianni-Konstantopoulos A; Leahy PS; Flytzanis CN
    J Cell Sci; 1998 Aug; 111 ( Pt 15)():2159-69. PubMed ID: 9664037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.