BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 3094838)

  • 1. Effects of glycosylation inhibitors on the frog retina.
    Chambers JP; Tsin AT; Raymond NY; Aldape FG; Rodriguez KA
    Brain Res Bull; 1986 Aug; 17(2):259-63. PubMed ID: 3094838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of inhibitors of glycoprotein synthesis and processing on the phagocytosis of rod outer segments by cultured retinal pigment epithelial cells.
    Hall MO; Burgess BL; Arakawa H; Fliesler SJ
    Glycobiology; 1990 Sep; 1(1):51-61. PubMed ID: 2136381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of glycosylation inhibitors on the structure and function of the murine transferrin receptor.
    Ralton JE; Jackson HJ; Zanoni M; Gleeson PA
    Eur J Biochem; 1989 Dec; 186(3):637-47. PubMed ID: 2514095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptor-specific degeneration caused by tunicamycin.
    Fliesler SJ; Rapp LM; Hollyfield JG
    Nature; 1984 Oct 11-17; 311(5986):575-7. PubMed ID: 6332991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of experimental metastasis by castanospermine in mice: blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors.
    Humphries MJ; Matsumoto K; White SL; Olden K
    Cancer Res; 1986 Oct; 46(10):5215-22. PubMed ID: 3093061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swainsonine and castanospermine blockade of mannose glycoprotein uptake by macrophages. Apparent inhibition of receptor-mediated endocytosis by endogenous ligands.
    Chung KN; Shepherd VL; Stahl PD
    J Biol Chem; 1984 Dec; 259(23):14637-41. PubMed ID: 6438101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of swainsonine on the phagocytosis of rod outer segments by rat RPE.
    Boyle DL; McLaughlin BJ
    Curr Eye Res; 1990 May; 9(5):407-14. PubMed ID: 2116954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-linking of dark-adapted frog photoreceptor disk membranes. Evidence for monomeric rhodopsin.
    Downer NW
    Biophys J; 1985 Mar; 47(3):285-93. PubMed ID: 3919779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A link between rhodopsin and disc membrane cyclic nucleotide phosphodiesterase. Action spectrum and sensitivity to illumination.
    Keirns JJ; Miki N; Bitensky MW; Keirns M
    Biochemistry; 1975 Jun; 14(12):2760-6. PubMed ID: 167806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of calmodulin on the structural state of photoreceptor membranes and rhodopsin-containing phospholipid vesicles.
    Volotovski ID; Ryba NJ; Watts A
    Biochem Biophys Res Commun; 1985 Jun; 129(2):517-21. PubMed ID: 4015644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin.
    Hicks D; Molday RS
    Exp Eye Res; 1986 Jan; 42(1):55-71. PubMed ID: 2420630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopsin phosphorylation inhibited by adenosine in frog rods: lack of effects on excitation.
    Donner K; Hemilä S
    Comp Biochem Physiol A Comp Physiol; 1985; 81(2):431-9. PubMed ID: 2412755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane biosynthesis in the frog retina: opsin transport in the photoreceptor cell.
    Papermaster DS; Converse CA; Siuss J
    Biochemistry; 1975 Apr; 14(7):1343-52. PubMed ID: 1079139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes.
    Thomas DD; Stryer L
    J Mol Biol; 1982 Jan; 154(1):145-57. PubMed ID: 7077659
    [No Abstract]   [Full Text] [Related]  

  • 15. Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin.
    Fliesler SJ; Rayborn ME; Hollyfield JG
    J Cell Biol; 1985 Feb; 100(2):574-87. PubMed ID: 3155750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial diffusion of retinol in isolated frog rod outer segments following substantial bleaches of visual pigment.
    Sears RC; Kaplan MW
    Vision Res; 1989; 29(11):1485-92. PubMed ID: 2635474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Ca2+ on the decay of rhodopsin photoproducts and photoreceptor adaptation in the isolated bullfrog retina.
    Hanawa I; Ando H; Matsuura T
    Jpn J Physiol; 1985; 35(3):495-502. PubMed ID: 3877200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoreceptor recovery in retinoid-deprived rats after vitamin A replenishment.
    Katz ML; Chen DM; Stientjes HJ; Stark WS
    Exp Eye Res; 1993 Jun; 56(6):671-82. PubMed ID: 8595809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C; Kühn H; Chabre M
    Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of tunicamycin and N-linked oligosaccharide-processing inhibitors on the morphology of cultured porcine thyroid cells.
    Giraud A; Franc JL
    Eur J Cell Biol; 1989 Feb; 48(1):128-34. PubMed ID: 2526017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.