These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30948715)

  • 1. Enhanced carbon dioxide electrolysis at redox manipulated interfaces.
    Wang W; Gan L; Lemmon JP; Chen F; Irvine JTS; Xie K
    Nat Commun; 2019 Apr; 10(1):1550. PubMed ID: 30948715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Active and Redox-Stable Ce-Doped LaSrCrFeO-Based Cathode Catalyst for CO2 SOECs.
    Zhang YQ; Li JH; Sun YF; Hua B; Luo JL
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6457-63. PubMed ID: 26901862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially confined catalysis-enhanced high-temperature carbon dioxide electrolysis.
    Yang L; Xue X; Xie K
    Phys Chem Chem Phys; 2015 May; 17(17):11705-14. PubMed ID: 25864375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Efficient CO
    Ye L; Pan C; Zhang M; Li C; Chen F; Gan L; Xie K
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25350-25357. PubMed ID: 28686008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ formation of oxygen vacancy in perovskite Sr(0.95)Ti(0.8)Nb(0.1)M(0.1)O3 (M = Mn, Cr) toward efficient carbon dioxide electrolysis.
    Zhang J; Xie K; Wei H; Qin Q; Qi W; Yang L; Ruan C; Wu Y
    Sci Rep; 2014 Nov; 4():7082. PubMed ID: 25403738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing CO
    Ye L; Zhang M; Huang P; Guo G; Hong M; Li C; Irvine JT; Xie K
    Nat Commun; 2017 Mar; 8():14785. PubMed ID: 28300066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platinum-Decorated Ceria Enhances CO
    Feng W; Song Y; Zhang X; Lv H; Liu Q; Wang G; Bao X
    ChemSusChem; 2020 Dec; 13(23):6290-6295. PubMed ID: 32459062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A composite cathode based on scandium doped titanate with enhanced electrocatalytic activity towards direct carbon dioxide electrolysis.
    Yang L; Xie K; Wu L; Qin Q; Zhang J; Zhang Y; Xie T; Wu Y
    Phys Chem Chem Phys; 2014 Oct; 16(39):21417-28. PubMed ID: 25182301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient electrochemical reforming of CH
    Lu J; Zhu C; Pan C; Lin W; Lemmon JP; Chen F; Li C; Xie K
    Sci Adv; 2018 Mar; 4(3):eaar5100. PubMed ID: 29670946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO
    Opitz AK; Nenning A; Rameshan C; Kubicek M; Götsch T; Blume R; Hävecker M; Knop-Gericke A; Rupprechter G; Klötzer B; Fleig J
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35847-35860. PubMed ID: 28933825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis.
    Gan L; Ye L; Tao S; Xie K
    Phys Chem Chem Phys; 2016 Jan; 18(4):3137-43. PubMed ID: 26743799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ growth of Ni(x)Cu(1-x) alloy nanocatalysts on redox-reversible rutile (Nb,Ti)O₄ towards high-temperature carbon dioxide electrolysis.
    Wei H; Xie K; Zhang J; Zhang Y; Wang Y; Qin Y; Cui J; Yan J; Wu Y
    Sci Rep; 2014 Jun; 4():5156. PubMed ID: 24889679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power-to-Syngas: An Enabling Technology for the Transition of the Energy System?
    Foit SR; Vinke IC; de Haart LGJ; Eichel RA
    Angew Chem Int Ed Engl; 2017 May; 56(20):5402-5411. PubMed ID: 27714905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving Highly Efficient Carbon Dioxide Electrolysis by
    Yang X; Sun W; Ma M; Xu C; Ren R; Qiao J; Wang Z; Li Z; Zhen S; Sun K
    ACS Appl Mater Interfaces; 2021 May; 13(17):20060-20069. PubMed ID: 33886263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction.
    Wang P; Qiao M; Shao Q; Pi Y; Zhu X; Li Y; Huang X
    Nat Commun; 2018 Nov; 9(1):4933. PubMed ID: 30467320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-reversible niobium-doped strontium titanate decorated with in situ grown nickel nanocatalyst for high-temperature direct steam electrolysis.
    Yang L; Xie K; Xu S; Wu T; Zhou Q; Xie T; Wu Y
    Dalton Trans; 2014 Oct; 43(37):14147-57. PubMed ID: 25134937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide.
    Singh MR; Clark EL; Bell AT
    Phys Chem Chem Phys; 2015 Jul; 17(29):18924-36. PubMed ID: 26103939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct conversion of carbon dioxide and steam into hydrocarbons and oxygenates using solid acid electrolysis cells.
    Fujiwara N; Tada S; Kikuchi R
    iScience; 2022 Nov; 25(11):105381. PubMed ID: 36439988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive review of aluminium electrolysis and the waste generated by it.
    Li X; Liu Y; Zhang TA
    Waste Manag Res; 2023 Oct; 41(10):1498-1511. PubMed ID: 37052310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of effects of different cathode materials on performance in Cd(II)-reduced microbial electrolysis cells.
    Zhou R; Zhou S; He C
    Bioresour Technol; 2020 Jul; 307():123198. PubMed ID: 32217438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.