BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30948733)

  • 21. Sphingomyelin-cholesterol interactions in biological and model membranes.
    Slotte JP
    Chem Phys Lipids; 1999 Nov; 102(1-2):13-27. PubMed ID: 11001557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of monoglyceride structure and cholesterol content on water permeability of the droplet bilayer.
    Michalak Z; Muzzio M; Milianta PJ; Giacomini R; Lee S
    Langmuir; 2013 Dec; 29(51):15919-25. PubMed ID: 24304231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M; Wang E; Zhuang X; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do sterols reduce proton and sodium leaks through lipid bilayers?
    Haines TH
    Prog Lipid Res; 2001 Jul; 40(4):299-324. PubMed ID: 11412894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations.
    Grouleff J; Irudayam SJ; Skeby KK; Schiøtt B
    Biochim Biophys Acta; 2015 Sep; 1848(9):1783-95. PubMed ID: 25839353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of ion interactions with a cholesterol-rich bilayer.
    Mao L; Yang L; Zhang Q; Jiang H; Yang H
    Biochem Biophys Res Commun; 2015 Dec 4-11; 468(1-2):125-9. PubMed ID: 26529547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cholesterol is the main regulator of the carbon dioxide permeability of biological membranes.
    Arias-Hidalgo M; Al-Samir S; Gros G; Endeward V
    Am J Physiol Cell Physiol; 2018 Aug; 315(2):C137-C140. PubMed ID: 29874108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Covalent modification of phosphatidylethanolamine by 4-hydroxy-2-nonenal increases sodium permeability across phospholipid bilayer membranes.
    Jovanović O; Škulj S; Pohl EE; Vazdar M
    Free Radic Biol Med; 2019 Nov; 143():433-440. PubMed ID: 31461663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-Stable Freestanding Lipid Membrane Array: Direct Visualization of Dynamic Membrane Remodeling with Cholesterol Transport and Enzymatic Reactions.
    Lee HR; Lee Y; Oh SS; Choi SQ
    Small; 2020 Oct; 16(40):e2002541. PubMed ID: 32924281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnification of Cholesterol-Induced Membrane Resistance on the Tissue Level: Implications for Hypoxia.
    Shea R; Smith C; Pias SC
    Adv Exp Med Biol; 2016; 923():43-50. PubMed ID: 27526123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of lipid composition on the structural and mechanical features of axonal membranes: a molecular simulation study.
    Saeedimasine M; Montanino A; Kleiven S; Villa A
    Sci Rep; 2019 May; 9(1):8000. PubMed ID: 31142762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CHIMs are versatile cholesterol analogs mimicking and visualizing cholesterol behavior in lipid bilayers and cells.
    Matos ALL; Keller F; Wegner T; Del Castillo CEC; Grill D; Kudruk S; Spang A; Glorius F; Heuer A; Gerke V
    Commun Biol; 2021 Jun; 4(1):720. PubMed ID: 34117357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of surface curvature on the rate of cholesterol transfer between lipid vesicles.
    Thomas PD; Poznansky MJ
    Biochem J; 1988 Aug; 254(1):155-60. PubMed ID: 3178745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Factors Affecting Enhanced Permeation of Amphotericin B Across Cell Membranes and Safety of Formulation.
    Adhikari K; Buatong W; Thawithong E; Suwandecha T; Srichana T
    AAPS PharmSciTech; 2016 Aug; 17(4):820-8. PubMed ID: 26349688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholesterol interactions with phospholipids in membranes.
    Ohvo-Rekilä H; Ramstedt B; Leppimäki P; Slotte JP
    Prog Lipid Res; 2002 Jan; 41(1):66-97. PubMed ID: 11694269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organization of lipids in fiber-cell plasma membranes of the eye lens.
    Subczynski WK; Mainali L; Raguz M; O'Brien WJ
    Exp Eye Res; 2017 Mar; 156():79-86. PubMed ID: 26988627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review.
    Subczynski WK; Pasenkiewicz-Gierula M; Widomska J; Mainali L; Raguz M
    Cell Biochem Biophys; 2017 Dec; 75(3-4):369-385. PubMed ID: 28417231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unraveling complex nanoscale lipid dynamics in simple model biomembranes: Insights from fluorescence correlation spectroscopy in super-resolution stimulated emission depletion mode.
    Sarangi NK; Roobala C; Basu JK
    Methods; 2018 May; 140-141():198-211. PubMed ID: 29175337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of aquaporin-lipid molar ratio on the permeability of an aquaporin Z-phospholipid membrane system.
    Kim H; Lee BH; Choi MK; Seo S; Kim MK
    PLoS One; 2020; 15(8):e0237789. PubMed ID: 32810188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.