BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30948733)

  • 41. Transport studies of doxorubicin in model membranes indicate a difference in passive diffusion across and binding at the outer and inner leaflets of the plasma membrane.
    Speelmans G; Staffhorst RW; de Kruijff B; de Wolf FA
    Biochemistry; 1994 Nov; 33(46):13761-8. PubMed ID: 7947787
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transformations in plasma membranes of cancerous cells and resulting consequences for cation insertion studied with molecular dynamics.
    Klähn M; Zacharias M
    Phys Chem Chem Phys; 2013 Sep; 15(34):14427-41. PubMed ID: 23881055
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Position-Dependent Diffusion Tensors in Anisotropic Media from Simulation: Oxygen Transport in and through Membranes.
    Ghysels A; Venable RM; Pastor RW; Hummer G
    J Chem Theory Comput; 2017 Jun; 13(6):2962-2976. PubMed ID: 28482659
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detailed molecular dynamics simulations of model biological membranes containing cholesterol.
    Berkowitz ML
    Biochim Biophys Acta; 2009 Jan; 1788(1):86-96. PubMed ID: 18930019
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membrane modifications in human erythroleukemia K562 cells during induction of programmed cell death by transforming growth factor beta 1 or cisplatin.
    Maccarrone M; Nieuwenhuizen WE; Dullens HF; Catani MV; Melino G; Veldink GA; Vliegenthart JF; Finazzo Agrò A
    Eur J Biochem; 1996 Oct; 241(1):297-302. PubMed ID: 8898920
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Permeability of fluid-phase phospholipid bilayers: assessment and useful correlations for permeability screening and other applications.
    Nitsche JM; Kasting GB
    J Pharm Sci; 2013 Jun; 102(6):2005-2032. PubMed ID: 23605505
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes.
    Skandani AA; Zeineldin R; Al-Haik M
    Langmuir; 2012 May; 28(20):7872-9. PubMed ID: 22545729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols.
    Casciola M; Bonhenry D; Liberti M; Apollonio F; Tarek M
    Bioelectrochemistry; 2014 Dec; 100():11-7. PubMed ID: 24731593
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interplay between lipid lateral diffusion, dye concentration and membrane permeability unveiled by a combined spectroscopic and computational study of a model lipid bilayer.
    Jan Akhunzada M; D'Autilia F; Chandramouli B; Bhattacharjee N; Catte A; Di Rienzo R; Cardarelli F; Brancato G
    Sci Rep; 2019 Feb; 9(1):1508. PubMed ID: 30728410
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cholesterol and other membrane active sterols: from membrane evolution to "rafts".
    Barenholz Y
    Prog Lipid Res; 2002 Jan; 41(1):1-5. PubMed ID: 11694266
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sterol carrier protein-2 expression alters plasma membrane lipid distribution and cholesterol dynamics.
    Gallegos AM; Atshaves BP; Storey SM; McIntosh AL; Petrescu AD; Schroeder F
    Biochemistry; 2001 May; 40(21):6493-506. PubMed ID: 11371213
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transmembrane movements of lipids.
    Zachowski A; Devaux PF
    Experientia; 1990 Jun; 46(6):644-56. PubMed ID: 2193828
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In silico pharmacology: Drug membrane partitioning and crossing.
    Di Meo F; Fabre G; Berka K; Ossman T; Chantemargue B; Paloncýová M; Marquet P; Otyepka M; Trouillas P
    Pharmacol Res; 2016 Sep; 111():471-486. PubMed ID: 27378566
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane.
    Mioka T; Fujimura-Kamada K; Mizugaki N; Kishimoto T; Sano T; Nunome H; Williams DE; Andersen RJ; Tanaka K
    Mol Biol Cell; 2018 May; 29(10):1203-1218. PubMed ID: 29540528
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Permeability across lipid membranes.
    Shinoda W
    Biochim Biophys Acta; 2016 Oct; 1858(10):2254-2265. PubMed ID: 27085977
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hopanoids, like sterols, modulate dynamics, compaction, phase segregation and permeability of membranes.
    Mangiarotti A; Genovese DM; Naumann CA; Monti MR; Wilke N
    Biochim Biophys Acta Biomembr; 2019 Dec; 1861(12):183060. PubMed ID: 31499020
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Universal Correlation Predicts Permeability Coefficients of Fluid- and Gel-Phase Phospholipid and Phospholipid-Cholesterol Bilayers for Arbitrary Solutes.
    Nitsche JM; Kasting GB
    J Pharm Sci; 2016 May; 105(5):1762-1771. PubMed ID: 27112406
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular dynamics simulations on the interaction of the transmembrane NavAb channel with cholesterol and lipids in the membrane.
    Suwattanasophon C; Wolschann P; Faller R
    J Biomol Struct Dyn; 2016; 34(2):318-26. PubMed ID: 25793565
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of Cholesterol on the Thermodynamics and Kinetics of Passive Transport of Water through Lipid Membranes.
    Issack BB; Peslherbe GH
    J Phys Chem B; 2015 Jul; 119(29):9391-400. PubMed ID: 25679811
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid composition and phospholipid asymmetry of membranes from a Schwann cell line.
    Calderón RO; DeVries GH
    J Neurosci Res; 1997 Aug; 49(3):372-80. PubMed ID: 9260748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.