BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30948768)

  • 1. Controlling the transverse proton relaxivity of magnetic graphene oxide.
    Thapa B; Diaz-Diestra D; Badillo-Diaz D; Sharma RK; Dasari K; Kumari S; Holcomb MB; Beltran-Huarac J; Weiner BR; Morell G
    Sci Rep; 2019 Apr; 9(1):5633. PubMed ID: 30948768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T₂-weighted spin-echo imaging.
    Pöselt E; Kloust H; Tromsdorf U; Janschel M; Hahn C; Maßlo C; Weller H
    ACS Nano; 2012 Feb; 6(2):1619-24. PubMed ID: 22276942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic-nanoparticle-doped carbogenic nanocomposite: an effective magnetic resonance/fluorescence multimodal imaging probe.
    Srivastava S; Awasthi R; Tripathi D; Rai MK; Agarwal V; Agrawal V; Gajbhiye NS; Gupta RK
    Small; 2012 Apr; 8(7):1099-109. PubMed ID: 22328128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Casein-Coated Fe5C2 Nanoparticles with Superior r2 Relaxivity for Liver-Specific Magnetic Resonance Imaging.
    Cowger TA; Tang W; Zhen Z; Hu K; Rink DE; Todd TJ; Wang GD; Zhang W; Chen H; Xie J
    Theranostics; 2015; 5(11):1225-32. PubMed ID: 26379788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering manganese ferrite shell on iron oxide nanoparticles for enhanced T
    Li M; Bao J; Zeng J; Huo L; Shan X; Cheng X; Qiu D; Miao W; Zhu X; Huang G; Ni K; Zhao Z
    J Colloid Interface Sci; 2022 Nov; 626():364-373. PubMed ID: 35797871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic Solid-Phase Extraction of Organic Compounds Based on Graphene Oxide Nanocomposites.
    Manousi N; Rosenberg E; Deliyanni E; Zachariadis GA; Samanidou V
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32143401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications.
    Peng E; Choo ES; Chandrasekharan P; Yang CT; Ding J; Chuang KH; Xue JM
    Small; 2012 Dec; 8(23):3620-30. PubMed ID: 22962025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile integration of multiple magnetite nanoparticles for theranostics combining efficient MRI and thermal therapy.
    Huang G; Zhu X; Li H; Wang L; Chi X; Chen J; Wang X; Chen Z; Gao J
    Nanoscale; 2015 Feb; 7(6):2667-75. PubMed ID: 25581879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of the 1H NMR relaxation enhancement produced by iron oxide and core-shell iron-iron oxide nanoparticles.
    Miguel OB; Gossuin Y; Morales MP; Gillis P; Muller RN; Veintemillas-Verdaguer S
    Magn Reson Imaging; 2007 Dec; 25(10):1437-41. PubMed ID: 17566686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of a novel biocompatible nanocomposite of graphene oxide and magnetic nanoparticles for drug delivery.
    Aliabadi M; Shagholani H; Yunessnia Lehi A
    Int J Biol Macromol; 2017 May; 98():287-291. PubMed ID: 28167110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-by-layer modification of magnetic graphene oxide by chitosan and sodium alginate with enhanced dispersibility for targeted drug delivery and photothermal therapy.
    Xie M; Zhang F; Peng H; Zhang Y; Li Y; Xu Y; Xie J
    Colloids Surf B Biointerfaces; 2019 Apr; 176():462-470. PubMed ID: 30682619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation and theory of proton NMR transverse relaxation induced by aggregation of magnetic particles used as MRI contrast agents.
    Vuong QL; Gillis P; Gossuin Y
    J Magn Reson; 2011 Sep; 212(1):139-48. PubMed ID: 21807538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile one-pot fabrication of calcium phosphate-based composite nanoparticles as delivery and MRI contrast agents for macrophages.
    Nakamura M; Oyane A; Kuroiwa K; Shimizu Y; Pyatenko A; Misawa M; Numano T; Kosuge H
    Colloids Surf B Biointerfaces; 2018 Feb; 162():135-145. PubMed ID: 29190464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of iron oxides on proton relaxivity.
    Josephson L; Lewis J; Jacobs P; Hahn PF; Stark DD
    Magn Reson Imaging; 1988; 6(6):647-53. PubMed ID: 2850434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy.
    Shi X; Gong H; Li Y; Wang C; Cheng L; Liu Z
    Biomaterials; 2013 Jul; 34(20):4786-93. PubMed ID: 23557860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerized graphene oxide/MnCe
    Torkashvand N; Sarlak N
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110555. PubMed ID: 31629095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot fabricating Fe3O4/graphene nanocomposite with excellent biocompatibility and non-toxicity as a negative MR contrast agent.
    Zan P; Yang C; Sun H; Zhao L; Lv Z; He Y
    Colloids Surf B Biointerfaces; 2016 Sep; 145():208-216. PubMed ID: 27182656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy.
    Wu M; Zhang D; Zeng Y; Wu L; Liu X; Liu J
    Nanotechnology; 2015 Mar; 26(11):115102. PubMed ID: 25721867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic iron oxide nanoparticles for biomedical applications.
    Laurent S; Bridot JL; Elst LV; Muller RN
    Future Med Chem; 2010 Mar; 2(3):427-49. PubMed ID: 21426176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging.
    Tähkä S; Laiho A; Kostiainen MA
    Chemistry; 2014 Mar; 20(10):2718-22. PubMed ID: 24523066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.