These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30948823)

  • 1. Spectrally distinct channelrhodopsins for two-colour optogenetic peripheral nerve stimulation.
    Maimon BE; Sparks K; Srinivasan S; Zorzos AN; Herr HM
    Nat Biomed Eng; 2018 Jul; 2(7):485-496. PubMed ID: 30948823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic control of targeted peripheral axons in freely moving animals.
    Towne C; Montgomery KL; Iyer SM; Deisseroth K; Delp SL
    PLoS One; 2013; 8(8):e72691. PubMed ID: 23991144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic Modulation for the Treatment of Traumatic Brain Injury.
    Delaney SL; Gendreau JL; D'Souza M; Feng AY; Ho AL
    Stem Cells Dev; 2020 Feb; 29(4):187-197. PubMed ID: 31559914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic recruitment of spinal reflex pathways from large-diameter primary afferents in non-transgenic rats transduced with AAV9/Channelrhodopsin 2.
    Kubota S; Sidikejiang W; Kudo M; Inoue KI; Umeda T; Takada M; Seki K
    J Physiol; 2019 Oct; 597(19):5025-5040. PubMed ID: 31397900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visceral hypersensitivity induced by optogenetic activation of the amygdala in conscious rats.
    Johnson AC; Latorre R; Ligon CO; Greenwood-Van Meerveld B
    Am J Physiol Gastrointest Liver Physiol; 2018 Mar; 314(3):G448-G457. PubMed ID: 29351398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Peripheral Nerve Immunogenicity.
    Maimon BE; Diaz M; Revol ECM; Schneider AM; Leaker B; Varela CE; Srinivasan S; Weber MB; Herr HM
    Sci Rep; 2018 Sep; 8(1):14076. PubMed ID: 30232391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lentiviral expression of GAD67 and CCK promoter-driven opsins to target interneurons in vitro and in vivo.
    Mantoan Ritter L; Macdonald DC; Ritter G; Escors D; Chiara F; Cariboni A; Schorge S; Kullmann DM; Collins M
    J Gene Med; 2016; 18(1-3):27-37. PubMed ID: 26824337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viral-mediated transduction of auditory neurons with opsins for optical and hybrid activation.
    Richardson RT; Thompson AC; Wise AK; Ajay EA; Gunewardene N; O'Leary SJ; Stoddart PR; Fallon JB
    Sci Rep; 2021 May; 11(1):11229. PubMed ID: 34045604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective optical control of synaptic transmission in the subcortical visual pathway by activation of viral vector-expressed halorhodopsin.
    Kaneda K; Kasahara H; Matsui R; Katoh T; Mizukami H; Ozawa K; Watanabe D; Isa T
    PLoS One; 2011 Apr; 6(4):e18452. PubMed ID: 21483674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction.
    Park JH; Hong JK; Jang JY; An J; Lee KS; Kang TM; Shin HJ; Suh JF
    Sci Rep; 2017 Jan; 7():40872. PubMed ID: 28098199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forelimb movements evoked by optogenetic stimulation of the macaque motor cortex.
    Watanabe H; Sano H; Chiken S; Kobayashi K; Fukata Y; Fukata M; Mushiake H; Nambu A
    Nat Commun; 2020 Jun; 11(1):3253. PubMed ID: 32591505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Feedback Control and Electrical-Optical Costimulation of Peripheral Nerves.
    Kapur SK; Richner TJ; Brodnick SK; Williams JC; Poore SO
    Plast Reconstr Surg; 2016 Sep; 138(3):451e-460e. PubMed ID: 27556620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viral Transduction of Human Rod Opsin or Channelrhodopsin Variants to Mouse ON Bipolar Cells Does Not Impact Retinal Anatomy or Cause Measurable Death in the Targeted Cells.
    Wright P; Rodgers J; Wynne J; Bishop PN; Lucas RJ; Milosavljevic N
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Spatial Extent of Optogenetic Silencing in Transgenic Mice Expressing Channelrhodopsin in Inhibitory Interneurons.
    Babl SS; Rummell BP; Sigurdsson T
    Cell Rep; 2019 Oct; 29(5):1381-1395.e4. PubMed ID: 31665647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Targeting-Optimized Chronos for Stimulation of the Auditory Pathway.
    Huet AT; Rankovic V
    Methods Mol Biol; 2021; 2191():261-285. PubMed ID: 32865750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic tools for modulating and probing the epileptic network.
    Zhao M; Alleva R; Ma H; Daniel AG; Schwartz TH
    Epilepsy Res; 2015 Oct; 116():15-26. PubMed ID: 26354163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational models of optogenetic tools for controlling neural circuits with light.
    Nikolic K; Jarvis S; Grossman N; Schultz S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5934-7. PubMed ID: 24111090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic control of contractile function in skeletal muscle.
    Bruegmann T; van Bremen T; Vogt CC; Send T; Fleischmann BK; Sasse P
    Nat Commun; 2015 Jun; 6():7153. PubMed ID: 26035411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transdermal optogenetic peripheral nerve stimulation.
    Maimon BE; Zorzos AN; Bendell R; Harding A; Fahmi M; Srinivasan S; Calvaresi P; Herr HM
    J Neural Eng; 2017 Jun; 14(3):034002. PubMed ID: 28157088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos.
    Keppeler D; Merino RM; Lopez de la Morena D; Bali B; Huet AT; Gehrt A; Wrobel C; Subramanian S; Dombrowski T; Wolf F; Rankovic V; Neef A; Moser T
    EMBO J; 2018 Dec; 37(24):. PubMed ID: 30396994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.