These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30949292)

  • 21. Inter-annual and spatial variability in hillslope runoff and mercury flux during spring snowmelt.
    Haynes KM; Mitchell CP
    J Environ Monit; 2012 Aug; 14(8):2083-91. PubMed ID: 22739974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian Himalaya.
    Gaddam VK; Kulkarni AV; Gupta AK
    Environ Monit Assess; 2018 Feb; 190(3):154. PubMed ID: 29464403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Snowmelt timing, phenology, and growing season length in conifer forests of Crater Lake National Park, USA.
    O'Leary DS; Kellermann JL; Wayne C
    Int J Biometeorol; 2018 Feb; 62(2):273-285. PubMed ID: 28965255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assimilation of Satellite-Based Snow Cover and Freeze/Thaw Observations Over High Mountain Asia.
    Xue Y; Houser PR; Maggioni V; Mei Y; Kumar SV; Yoon Y
    Front Earth Sci (Lausanne); 2019; 7():. PubMed ID: 33869235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Snowmelt and its role in the hydrologic and nutrient budgets of prairie streams.
    Corriveau J; Chambers PA; Yates AG; Culp JM
    Water Sci Technol; 2011; 64(8):1590-6. PubMed ID: 22335100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of manure application on surface energy and snow cover: model development and sensitivities.
    Kongoli CE; Bland WL
    J Environ Qual; 2002; 31(4):1174-83. PubMed ID: 12175035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying the legacy of snowmelt timing on soil greenhouse gas emissions in a seasonally dry montane forest.
    Blankinship JC; McCorkle EP; Meadows MW; Hart SC
    Glob Chang Biol; 2018 Dec; 24(12):5933-5947. PubMed ID: 30295387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrological modelling of a snow/glacier-fed western Himalayan basin to simulate the current and future streamflows under changing climate scenarios.
    Shukla S; Jain SK; Kansal ML
    Sci Total Environ; 2021 Nov; 795():148871. PubMed ID: 34378536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stream water hydrochemistry as an indicator of carbon flow paths in Finnish peatland catchments during a spring snowmelt event.
    Dinsmore KJ; Billett MF; Dyson KE; Harvey F; Thomson AM; Piirainen S; Kortelainen P
    Sci Total Environ; 2011 Oct; 409(22):4858-67. PubMed ID: 21885090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of AMSR-E microwave satellite data for land surface characteristics and snow cover variation.
    Boori MS; Ferraro RR; Choudhary K; Kupriyanov A
    Data Brief; 2016 Dec; 9():1077-1089. PubMed ID: 27924293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Snow parameters modeling using remote sensing techniques and HEC-HMS hydrological modeling-case study: Kan Basin.
    Roohi M; Faeli M; Jamshidi F; Ghasroddashti AP
    Environ Monit Assess; 2023 May; 195(6):684. PubMed ID: 37193863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased spring freezing vulnerability for alpine shrubs under early snowmelt.
    Wheeler JA; Hoch G; Cortés AJ; Sedlacek J; Wipf S; Rixen C
    Oecologia; 2014 May; 175(1):219-29. PubMed ID: 24435708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solving Challenges of Assimilating Microwave Remote Sensing Signatures With a Physical Model to Estimate Snow Water Equivalent.
    Merkouriadi I; Lemmetyinen J; Liston GE; Pulliainen J
    Water Resour Res; 2021 Nov; 57(11):e2021WR030119. PubMed ID: 34824483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fate of lincomycin in snowmelt runoff from manure-amended pasture.
    Kuchta SL; Cessna AJ
    Chemosphere; 2009 Jul; 76(4):439-46. PubMed ID: 19419747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the performance of temperature index snowmelt model of SWAT by using MODIS land surface temperature data.
    Yang Y; Onishi T; Hiramatsu K
    ScientificWorldJournal; 2014; 2014():823424. PubMed ID: 25165746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The impact of rainfall distribution methods on streamflow throughout multiple elevations in the Rocky Mountains using the APEX model-Price River watershed, Utah.
    Worqlul AW; Jeong J; Green CHM; Abitew TA
    J Environ Qual; 2021 Nov; 50(6):1395-1407. PubMed ID: 34665466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of river water quality during snowmelt and base flow periods in two catchment areas with different land use.
    Woli KP; Hayakawa A; Kuramochi K; Hatano R
    Environ Monit Assess; 2008 Feb; 137(1-3):251-60. PubMed ID: 17503203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Snowpacks decrease and streamflows shift across the eastern US as winters warm.
    Ford CM; Kendall AD; Hyndman DW
    Sci Total Environ; 2021 Nov; 793():148483. PubMed ID: 34182450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4.
    Lee JE; Berry JA; van der Tol C; Yang X; Guanter L; Damm A; Baker I; Frankenberg C
    Glob Chang Biol; 2015 Sep; 21(9):3469-77. PubMed ID: 25881891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of 21st century climate change on seasonal flow regimes and hydrologic extremes over the Midwest and Great Lakes region of the US.
    Byun K; Chiu CM; Hamlet AF
    Sci Total Environ; 2019 Feb; 650(Pt 1):1261-1277. PubMed ID: 30308814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.