These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30949293)

  • 1. A teleoperated control approach for anthropomorphic manipulator using magneto-inertial sensors.
    Noccaro A; Cordella F; Zollo L; Di Pino G; Guglielmelli E; Formica D
    ROMAN; 2017 Aug; 2017():156-161. PubMed ID: 30949293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics and Singularity Analysis of a 7-DOF Redundant Manipulator.
    Shi X; Guo Y; Chen X; Chen Z; Yang Z
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
    Zhao G; Jiang D; Liu X; Tong X; Sun Y; Tao B; Kong J; Yun J; Liu Y; Fang Z
    Front Bioeng Biotechnol; 2022; 10():832829. PubMed ID: 35662837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Value of Estimating Human Arm Stiffness during Virtual Teleoperation with Robotic Manipulators.
    Buzzi J; Ferrigno G; Jansma JM; De Momi E
    Front Neurosci; 2017; 11():528. PubMed ID: 29018319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control design and implementation of a novel master-slave surgery robot system, MicroHand A.
    Sang H; Wang S; Li J; He C; Zhang L; Wang X
    Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redundancy problem in writing: from human to anthropomorphic robot arm.
    Potkonjak V; Popovic M; Lazarevic M; Sinanovic J
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(6):790-805. PubMed ID: 18255998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Improved Weighted Gradient Projection Method for Inverse Kinematics of Redundant Surgical Manipulators.
    Zhang X; Fan B; Wang C; Cheng X
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.
    Chiang MH; Lin HT
    Sensors (Basel); 2011; 11(12):11476-94. PubMed ID: 22247676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hamlyn CRM: a compact master manipulator for surgical robot remote control.
    Zhang D; Liu J; Zhang L; Yang GZ
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):503-514. PubMed ID: 31956954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial-Robotic Motion Tracking in End-Effector-Based Rehabilitation Robots.
    Passon A; Schauer T; Seel T
    Front Robot AI; 2020; 7():554639. PubMed ID: 33501318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons.
    Lauretti C; Cordella F; Ciancio AL; Trigili E; Catalan JM; Badesa FJ; Crea S; Pagliara SM; Sterzi S; Vitiello N; Garcia Aracil N; Zollo L
    Front Neurorobot; 2018; 12():5. PubMed ID: 29527161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Haptic-Based Dual-Arm Manipulation.
    Turlapati SH; Campolo D
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving low-cost inertial-measurement-unit (IMU)-based motion tracking accuracy for a biomorphic hyper-redundant snake robot.
    Yang W; Bajenov A; Shen Y
    Robotics Biomim; 2017; 4(1):16. PubMed ID: 29170730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unified Robot and Inertial Sensor Self-Calibration.
    Ferguson JM; Ertop TE; Herrell SD; Webster RJ
    Robotica; 2023 May; 41(5):1590-1616. PubMed ID: 37732333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion.
    Filippeschi A; Schmitz N; Miezal M; Bleser G; Ruffaldi E; Stricker D
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A behavior-based inverse kinematics algorithm to predict arm prehension postures for computer-aided ergonomic evaluation.
    Wang X
    J Biomech; 1999 May; 32(5):453-60. PubMed ID: 10326998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Adaptive and Switching Control for Contact Maintenance of a Robotic Vehicle-Manipulator System for Underwater Asset Inspection.
    Cetin K; Zapico CS; Tugal H; Petillot Y; Dunnigan M; Erden MS
    Front Robot AI; 2021; 8():706558. PubMed ID: 34395538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IMU-based online kinematic calibration of robot manipulator.
    Du G; Zhang P
    ScientificWorldJournal; 2013; 2013():139738. PubMed ID: 24302854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a model-based inverse kinematics approach based on wearable inertial sensors.
    Tagliapietra L; Modenese L; Ceseracciu E; MazzĂ  C; Reggiani M
    Comput Methods Biomech Biomed Engin; 2018 Dec; 21(16):834-844. PubMed ID: 30466324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.