These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 30949579)
1. Near-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene editing platform. Pan Y; Yang J; Luan X; Liu X; Li X; Yang J; Huang T; Sun L; Wang Y; Lin Y; Song Y Sci Adv; 2019 Apr; 5(4):eaav7199. PubMed ID: 30949579 [TBL] [Abstract][Full Text] [Related]
2. A CRISPR-Cas9-Based Near-Infrared Upconversion-Activated DNA Methylation Editing System. Chi J; Zhao J; Wei S; Li Y; Zhi J; Wang H; Hou X; Hu L; Zheng X; Gao M ACS Appl Mater Interfaces; 2021 Feb; 13(5):6043-6052. PubMed ID: 33525876 [TBL] [Abstract][Full Text] [Related]
3. CRISPR/Cas9 delivery by NIR-responsive biomimetic nanoparticles for targeted HBV therapy. Wang D; Chen L; Li C; Long Q; Yang Q; Huang A; Tang H J Nanobiotechnology; 2022 Jan; 20(1):27. PubMed ID: 34991617 [TBL] [Abstract][Full Text] [Related]
4. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption. Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809 [TBL] [Abstract][Full Text] [Related]
5. Near-Infrared Light Activated Formulation for the Spatially Controlled Release of CRISPR-Cas9 Ribonucleoprotein for Brain Gene Editing. Simões S; Lino M; Barrera A; Rebelo C; Tomatis F; Vilaça A; Breunig C; Neuner A; Peça J; González R; Carvalho A; Stricker S; Ferreira L Angew Chem Int Ed Engl; 2024 May; 63(21):e202401004. PubMed ID: 38497898 [TBL] [Abstract][Full Text] [Related]
6. A Rationally Designed Semiconducting Polymer Brush for NIR-II Imaging-Guided Light-Triggered Remote Control of CRISPR/Cas9 Genome Editing. Li L; Yang Z; Zhu S; He L; Fan W; Tang W; Zou J; Shen Z; Zhang M; Tang L; Dai Y; Niu G; Hu S; Chen X Adv Mater; 2019 May; 31(21):e1901187. PubMed ID: 30957918 [TBL] [Abstract][Full Text] [Related]
7. A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing. Finn JD; Smith AR; Patel MC; Shaw L; Youniss MR; van Heteren J; Dirstine T; Ciullo C; Lescarbeau R; Seitzer J; Shah RR; Shah A; Ling D; Growe J; Pink M; Rohde E; Wood KM; Salomon WE; Harrington WF; Dombrowski C; Strapps WR; Chang Y; Morrissey DV Cell Rep; 2018 Feb; 22(9):2227-2235. PubMed ID: 29490262 [TBL] [Abstract][Full Text] [Related]
8. Sono-Controllable and ROS-Sensitive CRISPR-Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy. Pu Y; Yin H; Dong C; Xiang H; Wu W; Zhou B; Du D; Chen Y; Xu H Adv Mater; 2021 Nov; 33(45):e2104641. PubMed ID: 34536041 [TBL] [Abstract][Full Text] [Related]
9. Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing. Wilbie D; Walther J; Mastrobattista E Acc Chem Res; 2019 Jun; 52(6):1555-1564. PubMed ID: 31099553 [TBL] [Abstract][Full Text] [Related]
10. Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing. Chen X; Chen Y; Xin H; Wan T; Ping Y Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2395-2405. PubMed ID: 31941712 [TBL] [Abstract][Full Text] [Related]
11. Small extracellular vesicles (sEVs)-based gene delivery platform for cell-specific CRISPR/Cas9 genome editing. Dubey S; Chen Z; Jiang YJ; Talis A; Molotkov A; Ali A; Mintz A; Momen-Heravi F Theranostics; 2024; 14(7):2777-2793. PubMed ID: 38773978 [TBL] [Abstract][Full Text] [Related]
14. Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice. Li L; Song L; Liu X; Yang X; Li X; He T; Wang N; Yang S; Yu C; Yin T; Wen Y; He Z; Wei X; Su W; Wu Q; Yao S; Gong C; Wei Y ACS Nano; 2017 Jan; 11(1):95-111. PubMed ID: 28114767 [TBL] [Abstract][Full Text] [Related]
15. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome. Zhen S; Takahashi Y; Narita S; Yang YC; Li X Oncotarget; 2017 Feb; 8(6):9375-9387. PubMed ID: 28030843 [TBL] [Abstract][Full Text] [Related]
16. Genome Editing with CRISPR-Cas9: Can It Get Any Better? Haeussler M; Concordet JP J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics. Givens BE; Naguib YW; Geary SM; Devor EJ; Salem AK AAPS J; 2018 Oct; 20(6):108. PubMed ID: 30306365 [TBL] [Abstract][Full Text] [Related]
18. Optical Control of Genome Editing by Photoactivatable Cas9. Otabe T; Nihongaki Y; Sato M Methods Mol Biol; 2021; 2312():225-233. PubMed ID: 34228293 [TBL] [Abstract][Full Text] [Related]
19. Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA. Miller JB; Zhang S; Kos P; Xiong H; Zhou K; Perelman SS; Zhu H; Siegwart DJ Angew Chem Int Ed Engl; 2017 Jan; 56(4):1059-1063. PubMed ID: 27981708 [TBL] [Abstract][Full Text] [Related]
20. CRISPR-Cas9 in genome editing: Its function and medical applications. Khadempar S; Familghadakchi S; Motlagh RA; Farahani N; Dashtiahangar M; Rezaei H; Gheibi Hayat SM J Cell Physiol; 2019 May; 234(5):5751-5761. PubMed ID: 30362544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]