These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30950198)

  • 1. A directed learning strategy integrating multiple omic data improves genomic prediction.
    Hu X; Xie W; Wu C; Xu S
    Plant Biotechnol J; 2019 Oct; 17(10):2011-2020. PubMed ID: 30950198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of parental phenotypic data into multi-omic models improves prediction of yield-related traits in hybrid rice.
    Xu Y; Zhao Y; Wang X; Ma Y; Li P; Yang Z; Zhang X; Xu C; Xu S
    Plant Biotechnol J; 2021 Feb; 19(2):261-272. PubMed ID: 32738177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of optimal prediction models using multi-omic data for selecting hybrid rice.
    Wang S; Wei J; Li R; Qu H; Chater JM; Ma R; Li Y; Xie W; Jia Z
    Heredity (Edinb); 2019 Sep; 123(3):395-406. PubMed ID: 30911139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of prediction ability by integrating multi-omic datasets in barley.
    Wu PY; Stich B; Weisweiler M; Shrestha A; Erban A; Westhoff P; Inghelandt DV
    BMC Genomics; 2022 Mar; 23(1):200. PubMed ID: 35279073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction and association mapping of agronomic traits in maize using multiple omic data.
    Xu Y; Xu C; Xu S
    Heredity (Edinb); 2017 Sep; 119(3):174-184. PubMed ID: 28590463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-supervised learning for genomic prediction of novel traits with small reference populations: an application to residual feed intake in dairy cattle.
    Yao C; Zhu X; Weigel KA
    Genet Sel Evol; 2016 Nov; 48(1):84. PubMed ID: 27821057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolomic prediction of yield in hybrid rice.
    Xu S; Xu Y; Gong L; Zhang Q
    Plant J; 2016 Oct; 88(2):219-227. PubMed ID: 27311694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates.
    Onogi A; Watanabe M; Mochizuki T; Hayashi T; Nakagawa H; Hasegawa T; Iwata H
    Theor Appl Genet; 2016 Apr; 129(4):805-817. PubMed ID: 26791836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models.
    Toda Y; Wakatsuki H; Aoike T; Kajiya-Kanegae H; Yamasaki M; Yoshioka T; Ebana K; Hayashi T; Nakagawa H; Hasegawa T; Iwata H
    PLoS One; 2020; 15(6):e0233951. PubMed ID: 32559220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolome-wide association studies for agronomic traits of rice.
    Wei J; Wang A; Li R; Qu H; Jia Z
    Heredity (Edinb); 2018 Apr; 120(4):342-355. PubMed ID: 29225351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GMStool: GWAS-based marker selection tool for genomic prediction from genomic data.
    Jeong S; Kim JY; Kim N
    Sci Rep; 2020 Nov; 10(1):19653. PubMed ID: 33184432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster.
    Edwards SM; Sørensen IF; Sarup P; Mackay TF; Sørensen P
    Genetics; 2016 Aug; 203(4):1871-83. PubMed ID: 27235308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel genomic selection method combining GBLUP and LASSO.
    Li H; Wang J; Bao Z
    Genetica; 2015 Jun; 143(3):299-304. PubMed ID: 25655266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic Prediction Accounting for Genotype by Environment Interaction Offers an Effective Framework for Breeding Simultaneously for Adaptation to an Abiotic Stress and Performance Under Normal Cropping Conditions in Rice.
    Ben Hassen M; Bartholomé J; Valè G; Cao TV; Ahmadi N
    G3 (Bethesda); 2018 Jul; 8(7):2319-2332. PubMed ID: 29743189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle.
    Hassani S; Saatchi M; Fernando RL; Garrick DJ
    Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. eQTLs are key players in the integration of genomic and transcriptomic data for phenotype prediction.
    Wade AR; Duruflé H; Sanchez L; Segura V
    BMC Genomics; 2022 Jun; 23(1):476. PubMed ID: 35764918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask Bayesian variable selection.
    Calus MPL; Goddard ME; Wientjes YCJ; Bowman PJ; Hayes BJ
    J Dairy Sci; 2018 May; 101(5):4279-4294. PubMed ID: 29550121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicted Residual Error Sum of Squares of Mixed Models: An Application for Genomic Prediction.
    Xu S
    G3 (Bethesda); 2017 Mar; 7(3):895-909. PubMed ID: 28108552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases.
    Sun YV; Hu YJ
    Adv Genet; 2016; 93():147-90. PubMed ID: 26915271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple-trait- and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes.
    Schulthess AW; Wang Y; Miedaner T; Wilde P; Reif JC; Zhao Y
    Theor Appl Genet; 2016 Feb; 129(2):273-87. PubMed ID: 26561306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.