BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 30950211)

  • 1. The role of post-translational modifications in cardiac hypertrophy.
    Yan K; Wang K; Li P
    J Cell Mol Med; 2019 Jun; 23(6):3795-3807. PubMed ID: 30950211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles and post-translational regulation of cardiac class IIa histone deacetylase isoforms.
    Weeks KL; Avkiran M
    J Physiol; 2015 Apr; 593(8):1785-97. PubMed ID: 25362149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The mechanism underlying histone deacetylases regulating cardiac hypertrophy].
    Ren L; Wu XS; Li YQ
    Yi Chuan; 2020 Jun; 42(6):536-547. PubMed ID: 32694112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ.
    Lin YH; Warren CM; Li J; McKinsey TA; Russell B
    Cell Signal; 2016 Aug; 28(8):1015-24. PubMed ID: 27185186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent discoveries of the role of histone modifications and related inhibitors in pathological cardiac hypertrophy.
    Wu KJ; Chen Q; Leung CH; Sun N; Gao F; Chen Z
    Drug Discov Today; 2024 Feb; 29(2):103878. PubMed ID: 38211819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-Translational Modification Control of Innate Immunity.
    Liu J; Qian C; Cao X
    Immunity; 2016 Jul; 45(1):15-30. PubMed ID: 27438764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function of histone methylation and acetylation modifiers in cardiac hypertrophy.
    Qin J; Guo N; Tong J; Wang Z
    J Mol Cell Cardiol; 2021 Oct; 159():120-129. PubMed ID: 34175302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of K63-linked polyubiquitination in cardiac hypertrophy.
    Yan K; Ponnusamy M; Xin Y; Wang Q; Li P; Wang K
    J Cell Mol Med; 2018 Oct; 22(10):4558-4567. PubMed ID: 30102008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy.
    Eom GH; Nam YS; Oh JG; Choe N; Min HK; Yoo EK; Kang G; Nguyen VH; Min JJ; Kim JK; Lee IK; Bassel-Duby R; Olson EN; Park WJ; Kook H
    Circ Res; 2014 Mar; 114(7):1133-43. PubMed ID: 24526703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin modifications remodel cardiac gene expression.
    Mathiyalagan P; Keating ST; Du XJ; El-Osta A
    Cardiovasc Res; 2014 Jul; 103(1):7-16. PubMed ID: 24812277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cross-talk between PARylation and SUMOylation in C/EBPβ at K134 site participates in pathological cardiac hypertrophy.
    Wang L; Wang P; Xu S; Li Z; Duan DD; Ye J; Li J; Ding Y; Zhang W; Lu J; Liu P
    Int J Biol Sci; 2022; 18(2):783-799. PubMed ID: 35002525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The poly(ADP-ribosyl)ation of FoxO3 mediated by PARP1 participates in isoproterenol-induced cardiac hypertrophy.
    Lu J; Zhang R; Hong H; Yang Z; Sun D; Sun S; Guo X; Ye J; Li Z; Liu P
    Biochim Biophys Acta; 2016 Dec; 1863(12):3027-3039. PubMed ID: 27686254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Technologies Unraveling the Significance of Post-Translational Modifications (PTMs) as Crucial Players in Neurodegeneration.
    Zafar S; Fatima SI; Schmitz M; Zerr I
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting post-translational modifications of histones for cancer therapy.
    Hsu YC; Hsieh YH; Liao CC; Chong LW; Lee CY; Yu YL; Chou RH
    Cell Mol Biol (Noisy-le-grand); 2015 Oct; 61(6):69-84. PubMed ID: 26518898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond.
    Cui Z; Scruggs SB; Gilda JE; Ping P; Gomes AV
    J Mol Cell Cardiol; 2014 Jun; 71():32-42. PubMed ID: 24140722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased O-GlcNAcylation induces myocardial hypertrophy.
    Chen X; Zhang L; He H; Sun Y; Shen Q; Shi L
    In Vitro Cell Dev Biol Anim; 2020 Oct; 56(9):735-743. PubMed ID: 32996013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A post-translational modification cascade employing HDAC9-PIASy-RNF4 axis regulates chondrocyte hypertrophy by modulating Nkx3.2 protein stability.
    Choi HJ; Kwon S; Kim DW
    Cell Signal; 2016 Sep; 28(9):1336-1348. PubMed ID: 27312341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Dual-Specificity Phosphatase (DUSP) Ubiquitination and Protein Stability.
    Chen HF; Chuang HC; Tan TH
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31151270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post translational modifications at the verge of plant-geminivirus interaction.
    Prasad A; Sharma S; Prasad M
    Biochim Biophys Acta Gene Regul Mech; 2023 Dec; 1866(4):194983. PubMed ID: 37717937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface.
    Wei J; Joshi S; Speransky S; Crowley C; Jayathilaka N; Lei X; Wu Y; Gai D; Jain S; Hoosien M; Gao Y; Chen L; Bishopric NH
    JCI Insight; 2017 Sep; 2(17):. PubMed ID: 28878124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.