These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 30950274)
1. Functional Metabolome Analysis of Penicillium roqueforti by Means of Differential Off-Line LC-NMR. Hammerl R; Frank O; Schmittnägel T; Ehrmann MA; Hofmann T J Agric Food Chem; 2019 May; 67(18):5135-5146. PubMed ID: 30950274 [TBL] [Abstract][Full Text] [Related]
2. Tyrosine Induced Metabolome Alterations of Hammerl R; Frank O; Dietz M; Hirschmann J; Hofmann T J Agric Food Chem; 2019 Aug; 67(31):8500-8509. PubMed ID: 31298534 [TBL] [Abstract][Full Text] [Related]
3. Functional diversity within the Penicillium roqueforti species. Gillot G; Jany JL; Poirier E; Maillard MB; Debaets S; Thierry A; Coton E; Coton M Int J Food Microbiol; 2017 Jan; 241():141-150. PubMed ID: 27771579 [TBL] [Abstract][Full Text] [Related]
4. Differential Off-line LC-NMR (DOLC-NMR) Metabolomics To Monitor Tyrosine-Induced Metabolome Alterations in Saccharomyces cerevisiae. Hammerl R; Frank O; Hofmann T J Agric Food Chem; 2017 Apr; 65(15):3230-3241. PubMed ID: 28381091 [TBL] [Abstract][Full Text] [Related]
5. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. García-Estrada C; Martín JF Appl Microbiol Biotechnol; 2016 Oct; 100(19):8303-13. PubMed ID: 27554495 [TBL] [Abstract][Full Text] [Related]
6. A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Kosalková K; Domínguez-Santos R; Coton M; Coton E; García-Estrada C; Liras P; Martín JF Appl Microbiol Biotechnol; 2015 Sep; 99(18):7601-12. PubMed ID: 25998659 [TBL] [Abstract][Full Text] [Related]
7. The developmental regulator Pcz1 affects the production of secondary metabolites in the filamentous fungus Penicillium roqueforti. Rojas-Aedo JF; Gil-Durán C; Goity A; Vaca I; Levicán G; Larrondo LF; Chávez R Microbiol Res; 2018; 212-213():67-74. PubMed ID: 29853169 [TBL] [Abstract][Full Text] [Related]
10. Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses. Fernández-Bodega MA; Mauriz E; Gómez A; Martín JF Int J Food Microbiol; 2009 Nov; 136(1):18-25. PubMed ID: 19837474 [TBL] [Abstract][Full Text] [Related]
11. Mycotoxin production capability of Penicillium roqueforti in strains isolated from mould-ripened traditional Turkish civil cheese. Cakmakci S; Gurses M; Hayaloglu AA; Cetin B; Sekerci P; Dagdemir E Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(2):245-9. PubMed ID: 25580944 [TBL] [Abstract][Full Text] [Related]
12. Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster. Fernández-Bodega Á; Álvarez-Álvarez R; Liras P; Martín JF Appl Microbiol Biotechnol; 2017 Aug; 101(15):6111-6121. PubMed ID: 28620689 [TBL] [Abstract][Full Text] [Related]
13. Genetic basis for mycophenolic acid production and strain-dependent production variability in Penicillium roqueforti. Gillot G; Jany JL; Dominguez-Santos R; Poirier E; Debaets S; Hidalgo PI; Ullán RV; Coton E; Coton M Food Microbiol; 2017 Apr; 62():239-250. PubMed ID: 27889155 [TBL] [Abstract][Full Text] [Related]
14. Isolation and metabolite production by Penicillium roqueforti, P. paneum and P. crustosum isolated in Canada. Sumarah MW; Miller JD; Blackwell BA Mycopathologia; 2005 Jun; 159(4):571-7. PubMed ID: 15983744 [TBL] [Abstract][Full Text] [Related]
15. Influence of intraspecific variability and abiotic factors on mycotoxin production in Penicillium roqueforti. Fontaine K; Hymery N; Lacroix MZ; Puel S; Puel O; Rigalma K; Gaydou V; Coton E; Mounier J Int J Food Microbiol; 2015 Dec; 215():187-93. PubMed ID: 26320771 [TBL] [Abstract][Full Text] [Related]
16. Roquefortine and isofumigaclavine A, alkaloids from Penicillium roqueforti. Polonsky J; Merrien MA; Scott PM Ann Nutr Aliment; 1977; 31(4-6):963-8. PubMed ID: 613945 [TBL] [Abstract][Full Text] [Related]
17. Secondary Metabolites Produced by the Blue-Cheese Ripening Mold Chávez R; Vaca I; García-Estrada C J Fungi (Basel); 2023 Apr; 9(4):. PubMed ID: 37108913 [TBL] [Abstract][Full Text] [Related]
18. Penicillium roqueforti: a multifunctional cell factory of high value-added molecules. Mioso R; Toledo Marante FJ; Herrera Bravo de Laguna I J Appl Microbiol; 2015 Apr; 118(4):781-91. PubMed ID: 25421646 [TBL] [Abstract][Full Text] [Related]
19. Effect of Penicillium roqueforti mycotoxins on Caco-2 cells: Acute and chronic exposure. Hymery N; Mounier J; Coton E Toxicol In Vitro; 2018 Apr; 48():188-194. PubMed ID: 29408666 [TBL] [Abstract][Full Text] [Related]
20. Penicillium camemberti and Penicillium roqueforti enhance the growth and survival of Shiga toxin-producing Escherichia coli O157 under mild acidic conditions. Lee K; Watanabe M; Sugita-Konishi Y; Hara-Kudo Y; Kumagai S J Food Sci; 2012 Feb; 77(2):M102-7. PubMed ID: 22251153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]