These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30950610)

  • 21. Oxygen Consumption by Red Wines. Part II: Differential Effects on Color and Chemical Composition Caused by Oxygen Taken in Different Sulfur Dioxide-Related Oxidation Contexts.
    Carrascon V; Fernandez-Zurbano P; Bueno M; Ferreira V
    J Agric Food Chem; 2015 Dec; 63(51):10938-47. PubMed ID: 26646423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox effect on volatile compound formation in wine during fermentation by Saccharomyces cerevisiae.
    Fariña L; Medina K; Urruty M; Boido E; Dellacassa E; Carrau F
    Food Chem; 2012 Sep; 134(2):933-9. PubMed ID: 23107710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode.
    Souza LP; Calegari F; Zarbin AJ; Marcolino-Junior LH; Bergamini MF
    J Agric Food Chem; 2011 Jul; 59(14):7620-5. PubMed ID: 21692474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acid complexation of iron controls the fate of hydrogen peroxide in model wine.
    Nguyen TH; Waterhouse AL
    Food Chem; 2022 May; 377():131910. PubMed ID: 35008018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling the fenton reaction in wine.
    Elias RJ; Waterhouse AL
    J Agric Food Chem; 2010 Feb; 58(3):1699-707. PubMed ID: 20047324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-line monitoring of oxygen as a method to qualify the oxygen consumption rate of wines.
    Nevares I; Martínez-Martínez V; Martínez-Gil A; Martín R; Laurie VF; Del Álamo-Sanza M
    Food Chem; 2017 Aug; 229():588-596. PubMed ID: 28372219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An in situ FTIR spectroscopic study of the electrochemical oxidation of ethanol at a Pb-modified polycrystalline Pt electrode immersed in aqueous KOH.
    Christensen PA; Jones SW; Hamnett A
    Phys Chem Chem Phys; 2013 Oct; 15(40):17268-76. PubMed ID: 24019182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wine oxidation and the role of cork.
    Karbowiak T; Gougeon RD; Alinc JB; Brachais L; Debeaufort F; Voilley A; Chassagne D
    Crit Rev Food Sci Nutr; 2010 Jan; 50(1):20-52. PubMed ID: 20047138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A procedure for the measurement of Oxygen Consumption Rates (OCRs) in red wines and some observations about the influence of wine initial chemical composition.
    Marrufo-Curtido A; Carrascón V; Bueno M; Ferreira V; Escudero A
    Food Chem; 2018 May; 248():37-45. PubMed ID: 29329868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated multienzyme electrochemical biosensors for monitoring malolactic fermentation in wines.
    Gamella M; Campuzano S; Conzuelo F; Curiel JA; Muñoz R; Reviejo AJ; Pingarrón JM
    Talanta; 2010 May; 81(3):925-33. PubMed ID: 20298874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Amperometric biosensor for ethanol analysis in wines and grape must during wine fermentation].
    Shkotova LV; Slast'ia EA; Zhyliakova TA; Soldatkin OP; Schuhmann W; Dziadevych SV
    Ukr Biokhim Zh (1999); 2005; 77(1):96-103. PubMed ID: 16335276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical Composition, and Role of SO₂.
    Ferreira V; Carrascon V; Bueno M; Ugliano M; Fernandez-Zurbano P
    J Agric Food Chem; 2015 Dec; 63(51):10928-37. PubMed ID: 26654524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox chemistry of red wine. Quantification by an oscillating reaction of the overall antioxidant power as a function of the temperature.
    Prenesti E; Toso S; Berto S
    J Agric Food Chem; 2005 May; 53(10):4220-7. PubMed ID: 15884864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Port wine oxidation management: a multiparametric kinetic approach.
    Martins RC; Monforte AR; Silva Ferreira A
    J Agric Food Chem; 2013 Jun; 61(22):5371-9. PubMed ID: 23659499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxygen consumption rates by different oenological tannins in a model wine solution.
    Pascual O; Vignault A; Gombau J; Navarro M; Gómez-Alonso S; García-Romero E; Canals JM; Hermosín-Gutíerrez I; Teissedre PL; Zamora F
    Food Chem; 2017 Nov; 234():26-32. PubMed ID: 28551234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Production-Accessible Method: Spectrophotometric Iron Speciation in Wine Using Ferrozine and Ethylenediaminetetraacetic Acid.
    Nguyen TH; Waterhouse AL
    J Agric Food Chem; 2019 Jan; 67(2):680-687. PubMed ID: 30561197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chronocoulometry of wine on multi-walled carbon nanotube modified electrode: Antioxidant capacity assay.
    Ziyatdinova G; Kozlova E; Budnikov H
    Food Chem; 2016 Apr; 196():405-10. PubMed ID: 26593508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An assessment of the role played by some oxidation-related aldehydes in wine aroma.
    Culleré L; Cacho J; Ferreira V
    J Agric Food Chem; 2007 Feb; 55(3):876-81. PubMed ID: 17263488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of aging wine in high and low oxygen conditions on the fractionation of Cu and Fe in Chardonnay wine.
    Kontoudakis N; Guo A; Scollary GR; Clark AC
    Food Chem; 2017 Aug; 229():319-328. PubMed ID: 28372180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elusive Chemistry of Hydrogen Sulfide and Mercaptans in Wine.
    Ferreira V; Franco-Luesma E; Vela E; López R; Hernández-Orte P
    J Agric Food Chem; 2018 Mar; 66(10):2237-2246. PubMed ID: 28960073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.