These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30950868)

  • 1. Tissue engineering for the pelvic floor.
    MacNeil S; Mangir N; Roman S; Mironska E
    Curr Opin Urol; 2019 Jul; 29(4):426-430. PubMed ID: 30950868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the biocompatibility of biomaterial constructs and constructs delivering cells for the pelvic floor.
    Mangir N; Roman S; MacNeil S
    Curr Opin Urol; 2019 Jul; 29(4):419-425. PubMed ID: 30950867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing new synthetic materials for use in the pelvic floor: what is the problem with the existing polypropylene materials?
    Roman S; Mangir N; MacNeil S
    Curr Opin Urol; 2019 Jul; 29(4):407-413. PubMed ID: 30950869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions.
    Bhardwaj N; Chouhan D; Mandal BB
    Curr Pharm Des; 2017; 23(24):3455-3482. PubMed ID: 28552069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is tissue engineering and biomaterials the future for lower urinary tract dysfunction (LUTD)/pelvic organ prolapse (POP)?
    Aboushwareb T; McKenzie P; Wezel F; Southgate J; Badlani G
    Neurourol Urodyn; 2011 Jun; 30(5):775-82. PubMed ID: 21661029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue engineering, stem cells, and cloning for the regeneration of urologic organs.
    Atala A
    Clin Plast Surg; 2003 Oct; 30(4):649-67. PubMed ID: 14621312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Experimental morphological rationale for the use of cultures of multipotent mesenchymal stem cells in combination with biomaterials in the reconstruction of the pelvic floor].
    Pavlov VN; Yashchuk AG; Musin II; Mufazalova NA; Shangina OR; Fatkullina IB; Danilko KV; Kulavskiy VA; Mehtieva ER; Molokanova AR
    Urologiia; 2019 Sep; (4):32-37. PubMed ID: 31535802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue.
    Hou M; Wu Q; Dai M; Xu P; Gu C; Jia X; Feng J; Mo X
    Biomed Mater; 2014 Dec; 10(1):015005. PubMed ID: 25546879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injectable biomaterials for stem cell delivery and tissue regeneration.
    Zhang Z
    Expert Opin Biol Ther; 2017 Jan; 17(1):49-62. PubMed ID: 27805430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biohybrid Membrane Systems for Testing Molecules and Stem Cell Therapy in Neuronal Tissue Engineering.
    Morelli S; Piscioneri A; Salerno S; Drioli E; Bartolo L
    Curr Pharm Des; 2017; 23(26):3858-3870. PubMed ID: 28699524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oestradiol-releasing Biodegradable Mesh Stimulates Collagen Production and Angiogenesis: An Approach to Improving Biomaterial Integration in Pelvic Floor Repair.
    Mangır N; Hillary CJ; Chapple CR; MacNeil S
    Eur Urol Focus; 2019 Mar; 5(2):280-289. PubMed ID: 28753895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.
    Bhardwaj N; Devi D; Mandal BB
    Macromol Biosci; 2015 Feb; 15(2):153-82. PubMed ID: 25283763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Tissue engineering in urology. Basic principles and application].
    Bartsch G; Atala A
    Urologe A; 2003 Mar; 42(3):354-65. PubMed ID: 12671769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [RESEARCH PROGRESS OF TISSUE ENGINEERED LIGAMENT].
    Sun Z; Li J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Sep; 29(9):1160-6. PubMed ID: 26750020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What is the greatest regulatory challenge in the translation of biomaterials to the clinic?
    Prestwich GD; Bhatia S; Breuer CK; Dahl SL; Mason C; McFarland R; McQuillan DJ; Sackner-Bernstein J; Schox J; Tente WE; Trounson A
    Sci Transl Med; 2012 Nov; 4(160):160cm14. PubMed ID: 23152323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of improved tissue integration and angiogenesis with an elastic, estradiol releasing polyurethane material designed for use in pelvic floor repair.
    Shafaat S; Mangir N; Regureos SR; Chapple CR; MacNeil S
    Neurourol Urodyn; 2018 Feb; 37(2):716-725. PubMed ID: 29439287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue engineering of human bladder.
    Atala A
    Br Med Bull; 2011; 97():81-104. PubMed ID: 21324973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomaterials for promoting brain protection, repair and regeneration.
    Orive G; Anitua E; Pedraz JL; Emerich DF
    Nat Rev Neurosci; 2009 Sep; 10(9):682-92. PubMed ID: 19654582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell delivery therapeutics for musculoskeletal regeneration.
    Nöth U; Rackwitz L; Steinert AF; Tuan RS
    Adv Drug Deliv Rev; 2010 Jun; 62(7-8):765-83. PubMed ID: 20398712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fascia tissue engineering with human adipose-derived stem cells in a murine model: Implications for pelvic floor reconstruction.
    Hung MJ; Wen MC; Huang YT; Chen GD; Chou MM; Yang VC
    J Formos Med Assoc; 2014 Oct; 113(10):704-15. PubMed ID: 23791005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.