BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30951061)

  • 1. Amplification-free SERS analysis of DNA mutation in cancer cells with single-base sensitivity.
    Wu L; Garrido-Maestu A; Guerreiro JRL; Carvalho S; Abalde-Cela S; Prado M; Diéguez L
    Nanoscale; 2019 Apr; 11(16):7781-7789. PubMed ID: 30951061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Enhanced Raman Spectroscopy (SERS) for the Multiplex Detection of Braf, Kras, and Pik3ca Mutations in Plasma of Colorectal Cancer Patients.
    Li X; Yang T; Li CS; Song Y; Lou H; Guan D; Jin L
    Theranostics; 2018; 8(6):1678-1689. PubMed ID: 29556349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and preparation of centrifugal microfluidic chip integrated with SERS detection for rapid diagnostics.
    Su X; Xu Y; Zhao H; Li S; Chen L
    Talanta; 2019 Mar; 194():903-909. PubMed ID: 30609623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods.
    Wu L; Wang Z; Zong S; Huang Z; Zhang P; Cui Y
    Biosens Bioelectron; 2012; 38(1):94-9. PubMed ID: 22647534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double Detection of Mycotoxins Based on SERS Labels Embedded Ag@Au Core-Shell Nanoparticles.
    Zhao Y; Yang Y; Luo Y; Yang X; Li M; Song Q
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21780-6. PubMed ID: 26381109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of circulating tumor cells in blood by shell-isolated nanoparticle - enhanced Raman spectroscopy (SHINERS) in microfluidic device.
    Niciński K; Krajczewski J; Kudelski A; Witkowska E; Trzcińska-Danielewicz J; Girstun A; Kamińska A
    Sci Rep; 2019 Jun; 9(1):9267. PubMed ID: 31239487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip.
    Zheng Z; Wu L; Li L; Zong S; Wang Z; Cui Y
    Talanta; 2018 Oct; 188():507-515. PubMed ID: 30029406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bull serum albumin coated Au@Agnanorods as SERS probes for ultrasensitive osteosarcoma cell detection.
    Yue J; Liu Z; Cai X; Ding X; Chen S; Tao K; Zhao T
    Talanta; 2016 Apr; 150():503-9. PubMed ID: 26838436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic chip using Au@SiO
    Gu Y; Li Z; Ge S; Mao Y; Gu Y; Cao X; Lu D
    Anal Bioanal Chem; 2022 Nov; 414(26):7659-7673. PubMed ID: 36050486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free surface-enhanced Raman spectroscopy for sensitive DNA detection by DNA-mediated silver nanoparticle growth.
    Gao F; Lei J; Ju H
    Anal Chem; 2013 Dec; 85(24):11788-93. PubMed ID: 24171654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing.
    Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X
    Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced Raman scattering spectroscopy.
    Hu J; Zhang CY
    Anal Chem; 2010 Nov; 82(21):8991-7. PubMed ID: 20919697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling DNA mutation patterns by SERS fingerprinting for supervised cancer classification.
    Wu L; Teixeira A; Garrido-Maestu A; Muinelo-Romay L; Lima L; Santos LL; Prado M; Diéguez L
    Biosens Bioelectron; 2020 Oct; 165():112392. PubMed ID: 32729513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Amplification Strategy-Based SERS Chip for Sensitive and Reproducible Detection of DNA Methyltransferase Activity in Human Serum.
    Chen R; Shi H; Meng X; Su Y; Wang H; He Y
    Anal Chem; 2019 Mar; 91(5):3597-3603. PubMed ID: 30724066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual-signal amplification strategy based on pump-free SERS microfluidic chip for rapid and ultrasensitive detection of non-small cell lung cancer-related circulating tumour DNA in mice serum.
    Cao X; Ge S; Zhou X; Mao Y; Sun Y; Lu W; Ran M
    Biosens Bioelectron; 2022 Jun; 205():114110. PubMed ID: 35219946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering.
    Ma D; Huang C; Zheng J; Tang J; Li J; Yang J; Yang R
    Biosens Bioelectron; 2018 Mar; 101():167-173. PubMed ID: 29073517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA.
    Novara C; Chiadò A; Paccotti N; Catuogno S; Esposito CL; Condorelli G; De Franciscis V; Geobaldo F; Rivolo P; Giorgis F
    Faraday Discuss; 2017 Dec; 205():271-289. PubMed ID: 28884170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction.
    Zheng C; Zhang L; Wang F; Cai Y; Du S; Zhang Z
    Talanta; 2018 Oct; 188():630-636. PubMed ID: 30029423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pump-free microfluidic chip based laryngeal squamous cell carcinoma-related microRNAs detection through the combination of surface-enhanced Raman scattering techniques and catalytic hairpin assembly amplification.
    Ge S; Li G; Zhou X; Mao Y; Gu Y; Li Z; Gu Y; Cao X
    Talanta; 2022 Aug; 245():123478. PubMed ID: 35436733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rough surface Au@Ag core-shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors.
    Fu Q; Liu HL; Wu Z; Liu A; Yao C; Li X; Xiao W; Yu S; Luo Z; Tang Y
    J Nanobiotechnology; 2015 Nov; 13():81. PubMed ID: 26577252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.