These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30951075)

  • 1. Plasmonic heating induced by Au nanoparticles for quasi-ballistic thermal transport in multi-walled carbon nanotubes.
    Xu Y; Zhao X; Li A; Yue Y; Jiang J; Zhang X
    Nanoscale; 2019 Apr; 11(16):7572-7581. PubMed ID: 30951075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Thermal Decomposition/Digestion of Proteins: A Rapid On-Surface Protein Digestion Technique for Mass Spectrometry Imaging.
    Zhou R; Basile F
    Anal Chem; 2017 Sep; 89(17):8704-8712. PubMed ID: 28727443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncontact sub-10 nm temperature measurement in near-field laser heating.
    Yue Y; Chen X; Wang X
    ACS Nano; 2011 Jun; 5(6):4466-75. PubMed ID: 21557563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles.
    Yashchenok A; Masic A; Gorin D; Inozemtseva O; Shim BS; Kotov N; Skirtach A; Möhwald H
    Small; 2015 Mar; 11(11):1320-7. PubMed ID: 25367373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ballistic Thermal Transport at Sub-10 nm Laser-Induced Hot Spots in GaN Crystal.
    Huang D; Sun Q; Liu Z; Xu S; Yang R; Yue Y
    Adv Sci (Weinh); 2023 Jan; 10(2):e2204777. PubMed ID: 36394164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows.
    Maestro LM; Haro-González P; del Rosal B; Ramiro J; Caamaño AJ; Carrasco E; Juarranz A; Sanz-Rodríguez F; Solé JG; Jaque D
    Nanoscale; 2013 Sep; 5(17):7882-9. PubMed ID: 23852326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local thermal elevation probing of metal nanostructures during laser illumination utilizing surface-enhanced Raman scattering from a single-walled carbon nanotube.
    Takase M; Nabika H; Hoshina S; Nara M; Komeda K; Shito R; Yasuda S; Murakoshi K
    Phys Chem Chem Phys; 2013 Mar; 15(12):4270-4. PubMed ID: 23416759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covellite CuS nanocrystals: realizing rapid microwave-assisted synthesis in air and unravelling the disappearance of their plasmon resonance after coupling with carbon nanotubes.
    Kim MR; Hafez HA; Chai X; Besteiro LV; Tan L; Ozaki T; Govorov AO; Izquierdo R; Ma D
    Nanoscale; 2016 Jul; 8(26):12946-57. PubMed ID: 27304092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Silica Supports on Plasmonic Heating of Molecular Adsorbates as Measured by Ultrafast Surface-Enhanced Raman Thermometry.
    Keller EL; Kang H; Haynes CL; Frontiera RR
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40577-40584. PubMed ID: 30427654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Optical to Chemical Hot Spots in Plasmonics.
    Gargiulo J; Berté R; Li Y; Maier SA; Cortés E
    Acc Chem Res; 2019 Sep; 52(9):2525-2535. PubMed ID: 31430119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging Local Heating and Thermal Diffusion of Nanomaterials with Plasmonic Thermal Microscopy.
    Chen Z; Shan X; Guan Y; Wang S; Zhu JJ; Tao N
    ACS Nano; 2015 Dec; 9(12):11574-81. PubMed ID: 26435320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying Photothermal and Hot Charge Carrier Effects in Plasmon-Driven Nanoparticle Syntheses.
    Kamarudheen R; Castellanos GW; Kamp LPJ; Clercx HJH; Baldi A
    ACS Nano; 2018 Aug; 12(8):8447-8455. PubMed ID: 30071160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Plasmonic Particle Trapping Using a Hybrid Structure of Nanoparticles and Nanorods.
    Lee SY; Kim HM; Park J; Kim SK; Youn JR; Song YS
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41655-41663. PubMed ID: 30404444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensionally assembled gold nanostructures for plasmonic biosensors.
    Guo L; Chen G; Kim DH
    Anal Chem; 2010 Jun; 82(12):5147-53. PubMed ID: 20469841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods.
    Hosseini Jebeli SA; West CA; Lee SA; Goldwyn HJ; Bilchak CR; Fakhraai Z; Willets KA; Link S; Masiello DJ
    Nano Lett; 2021 Jun; 21(12):5386-5393. PubMed ID: 34061548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive electrochemical sensing platform for microRNAs detection based on shortened multi-walled carbon nanotubes with high-loaded thionin.
    Deng K; Liu X; Li C; Huang H
    Biosens Bioelectron; 2018 Oct; 117():168-174. PubMed ID: 29894854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance.
    Rajender G; Choudhury B; Giri PK
    Nanotechnology; 2017 Sep; 28(39):395703. PubMed ID: 28726671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.
    Hermann RJ; Gordon MJ
    Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.