These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 30951096)
1. Temporal Small RNA Expression Profiling under Drought Reveals a Potential Regulatory Role of Small Nucleolar RNAs in the Drought Responses of Maize. Zheng J; Zeng E; Du Y; He C; Hu Y; Jiao Z; Wang K; Li W; Ludens M; Fu J; Wang H; White FF; Wang G; Liu S Plant Genome; 2019 Mar; 12(1):. PubMed ID: 30951096 [TBL] [Abstract][Full Text] [Related]
2. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background. Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720 [TBL] [Abstract][Full Text] [Related]
3. Genome-Wide Characterization of Maize Small RNA Loci and Their Regulation in the required to maintain repression6-1 (rmr6-1) Mutant and Long-Term Abiotic Stresses. Lunardon A; Forestan C; Farinati S; Axtell MJ; Varotto S Plant Physiol; 2016 Mar; 170(3):1535-48. PubMed ID: 26747286 [TBL] [Abstract][Full Text] [Related]
4. Construction of regulatory networks mediated by small RNAs responsive to abiotic stresses in rice (Oryza sativa). Qin J; Ma X; Tang Z; Meng Y Comput Biol Chem; 2015 Oct; 58():69-80. PubMed ID: 26057839 [TBL] [Abstract][Full Text] [Related]
5. Early Drought-Responsive Genes Are Variable and Relevant to Drought Tolerance. He C; Du Y; Fu J; Zeng E; Park S; White F; Zheng J; Liu S G3 (Bethesda); 2020 May; 10(5):1657-1670. PubMed ID: 32161086 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Small RNAs Derived from tRNAs, rRNAs and snoRNAs and Their Response to Heat Stress in Wheat Seedlings. Wang Y; Li H; Sun Q; Yao Y PLoS One; 2016; 11(3):e0150933. PubMed ID: 26963812 [TBL] [Abstract][Full Text] [Related]
7. Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Hackenberg M; Gustafson P; Langridge P; Shi BJ Plant Biotechnol J; 2015 Jan; 13(1):2-13. PubMed ID: 24975557 [TBL] [Abstract][Full Text] [Related]
8. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. Zhang X; Lei L; Lai J; Zhao H; Song W BMC Plant Biol; 2018 Apr; 18(1):68. PubMed ID: 29685101 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. Chung PJ; Jung H; Jeong DH; Ha SH; Choi YD; Kim JK BMC Genomics; 2016 Aug; 17():563. PubMed ID: 27501838 [TBL] [Abstract][Full Text] [Related]
10. Identification and functional characterization of intermediate-size non-coding RNAs in maize. Li D; Qiao H; Qiu W; Xu X; Liu T; Jiang Q; Liu R; Jiao Z; Zhang K; Bi L; Chen R; Kan Y BMC Genomics; 2018 Oct; 19(1):730. PubMed ID: 30286715 [TBL] [Abstract][Full Text] [Related]
11. Drought-induced circular RNAs in maize roots: Separating signal from noise. Xu J; Wang Q; Tang X; Feng X; Zhang X; Liu T; Wu F; Wang Q; Feng X; Tang Q; Lisch D; Lu Y Plant Physiol; 2024 Sep; 196(1):352-367. PubMed ID: 38669308 [TBL] [Abstract][Full Text] [Related]
12. Drought stress responses in maize are diminished by Piriformospora indica. Zhang W; Wang J; Xu L; Wang A; Huang L; Du H; Qiu L; Oelmüller R Plant Signal Behav; 2018 Jan; 13(1):e1414121. PubMed ID: 29219729 [TBL] [Abstract][Full Text] [Related]
13. Water-deficit-induced changes in transcription factor expression in maize seedlings. Seeve CM; Cho IJ; Hearne LB; Srivastava GP; Joshi T; Smith DO; Sharp RE; Oliver MJ Plant Cell Environ; 2017 May; 40(5):686-701. PubMed ID: 28039925 [TBL] [Abstract][Full Text] [Related]
14. Spatio-Temporal Transcriptional Dynamics of Maize Long Non-Coding RNAs Responsive to Drought Stress. Pang J; Zhang X; Ma X; Zhao J Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30781862 [TBL] [Abstract][Full Text] [Related]
15. Water-deficit responsive microRNAs in the primary root growth zone of maize. Seeve CM; Sunkar R; Zheng Y; Liu L; Liu Z; McMullen M; Nelson S; Sharp RE; Oliver MJ BMC Plant Biol; 2019 Oct; 19(1):447. PubMed ID: 31651253 [TBL] [Abstract][Full Text] [Related]
16. Expression profile of maize microRNAs corresponding to their target genes under drought stress. Wang YG; An M; Zhou SF; She YH; Li WC; Fu FL Biochem Genet; 2014 Dec; 52(11-12):474-93. PubMed ID: 25027834 [TBL] [Abstract][Full Text] [Related]
17. System analysis of microRNAs in the development and aluminium stress responses of the maize root system. Kong X; Zhang M; Xu X; Li X; Li C; Ding Z Plant Biotechnol J; 2014 Oct; 12(8):1108-21. PubMed ID: 24985700 [TBL] [Abstract][Full Text] [Related]
18. Response of maize serine/arginine-rich protein gene family in seedlings to drought stress. Li J; Guo Y; Cui W; Xu A; Tian Z Yi Chuan; 2014 Jul; 36(7):697-706. PubMed ID: 25076035 [TBL] [Abstract][Full Text] [Related]
19. Investigating the regulatory roles of the microRNAs and the Argonaute 1-enriched small RNAs in plant metabolism. Qin J; Tang Z; Ma X; Meng Y Gene; 2017 Sep; 628():180-189. PubMed ID: 28698160 [TBL] [Abstract][Full Text] [Related]
20. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. Wang Y; Li L; Tang S; Liu J; Zhang H; Zhi H; Jia G; Diao X BMC Genet; 2016 Apr; 17():57. PubMed ID: 27068810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]