These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 30951303)

  • 41. Role of symbiosis in the discovery of novel antibiotics.
    Gogineni V; Chen X; Hanna G; Mayasari D; Hamann MT
    J Antibiot (Tokyo); 2020 Aug; 73(8):490-503. PubMed ID: 32499556
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent Advances in Nanotechnology-Aided Materials in Combating Microbial Resistance and Functioning as Antibiotics Substitutes.
    Munir MU; Ahmed A; Usman M; Salman S
    Int J Nanomedicine; 2020; 15():7329-7358. PubMed ID: 33116477
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials.
    O'Connell KM; Hodgkinson JT; Sore HF; Welch M; Salmond GP; Spring DR
    Angew Chem Int Ed Engl; 2013 Oct; 52(41):10706-33. PubMed ID: 24038605
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Next-Generation Drug Discovery to Combat Antimicrobial Resistance.
    Niu G; Li W
    Trends Biochem Sci; 2019 Nov; 44(11):961-972. PubMed ID: 31256981
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Current challenges in the discovery of novel antibacterials from microbial natural products.
    Genilloud O
    Recent Pat Antiinfect Drug Discov; 2012 Dec; 7(3):189-204. PubMed ID: 22963258
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interplay of emerging and established technologies drives innovation in natural product antibiotic discovery.
    Bader CD; Nichols AL; Yang D; Shen B
    Curr Opin Microbiol; 2023 Oct; 75():102359. PubMed ID: 37517368
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance.
    Parrino B; Schillaci D; Carnevale I; Giovannetti E; Diana P; Cirrincione G; Cascioferro S
    Eur J Med Chem; 2019 Jan; 161():154-178. PubMed ID: 30347328
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolving Antibiotics against Resistance: a Potential Platform for Natural Product Development?
    Wollein Waldetoft K; Gurney J; Lachance J; Hoskisson PA; Brown SP
    mBio; 2019 Dec; 10(6):. PubMed ID: 31874919
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthetic-Bioinformatic Natural Product Antibiotics with Diverse Modes of Action.
    Chu J; Koirala B; Forelli N; Vila-Farres X; Ternei MA; Ali T; Colosimo DA; Brady SF
    J Am Chem Soc; 2020 Aug; 142(33):14158-14168. PubMed ID: 32697091
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial environments confound antibiotic efficacy.
    Lee HH; Collins JJ
    Nat Chem Biol; 2011 Dec; 8(1):6-9. PubMed ID: 22173343
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds.
    Martelli G; Giacomini D
    Eur J Med Chem; 2018 Oct; 158():91-105. PubMed ID: 30205261
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antibiotic discovery through microbial interactions.
    Zhang C; Straight PD
    Curr Opin Microbiol; 2019 Oct; 51():64-71. PubMed ID: 31344518
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis and Biological Evaluation of the Antimicrobial Natural Product Lipoxazolidinone A.
    Mills JJ; Robinson KR; Zehnder TE; Pierce JG
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8682-8686. PubMed ID: 29845720
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The future of natural products as a source of new antibiotics.
    Luzhetskyy A; Pelzer S; Bechthold A
    Curr Opin Investig Drugs; 2007 Aug; 8(8):608-13. PubMed ID: 17668363
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biofilm-specific antibiotic tolerance and resistance.
    Olsen I
    Eur J Clin Microbiol Infect Dis; 2015 May; 34(5):877-86. PubMed ID: 25630538
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New strategies for combating multidrug-resistant bacteria.
    Wright GD; Sutherland AD
    Trends Mol Med; 2007 Jun; 13(6):260-7. PubMed ID: 17493872
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prophages and Growth Dynamics Confound Experimental Results with Antibiotic-Tolerant Persister Cells.
    Harms A; Fino C; Sørensen MA; Semsey S; Gerdes K
    mBio; 2017 Dec; 8(6):. PubMed ID: 29233898
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent progress of antibacterial natural products: Future antibiotics candidates.
    Dai J; Han R; Xu Y; Li N; Wang J; Dan W
    Bioorg Chem; 2020 Aug; 101():103922. PubMed ID: 32559577
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery.
    Parkhill SL; Johnson EO
    Biochem J; 2024 Jul; 481(13):839-864. PubMed ID: 38958473
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Confronting the challenges of discovery of novel antibacterial agents.
    Singh SB
    Bioorg Med Chem Lett; 2014 Aug; 24(16):3683-9. PubMed ID: 25017034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.