These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 30951476)
1. Serendipity-A Machine-Learning Application for Mining Serendipitous Drug Usage From Social Media. Ru B; Li D; Hu Y; Yao L IEEE Trans Nanobioscience; 2019 Jul; 18(3):324-334. PubMed ID: 30951476 [TBL] [Abstract][Full Text] [Related]
2. Medical concept normalization in social media posts with recurrent neural networks. Tutubalina E; Miftahutdinov Z; Nikolenko S; Malykh V J Biomed Inform; 2018 Aug; 84():93-102. PubMed ID: 29906585 [TBL] [Abstract][Full Text] [Related]
3. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks. Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224 [TBL] [Abstract][Full Text] [Related]
4. Identifying health related occupations of Twitter users through word embedding and deep neural networks. Zainab K; Srivastava G; Mago V BMC Bioinformatics; 2022 Sep; 22(Suppl 10):630. PubMed ID: 36171569 [TBL] [Abstract][Full Text] [Related]
5. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127 [TBL] [Abstract][Full Text] [Related]
6. A new word embedding model integrated with medical knowledge for deep learning-based sentiment classification. Khine AH; Wettayaprasit W; Duangsuwan J Artif Intell Med; 2024 Feb; 148():102758. PubMed ID: 38325934 [TBL] [Abstract][Full Text] [Related]
7. Assessing Suicide Risk and Emotional Distress in Chinese Social Media: A Text Mining and Machine Learning Study. Cheng Q; Li TM; Kwok CL; Zhu T; Yip PS J Med Internet Res; 2017 Jul; 19(7):e243. PubMed ID: 28694239 [TBL] [Abstract][Full Text] [Related]
8. Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification. Oleynik M; Kugic A; Kasáč Z; Kreuzthaler M J Am Med Inform Assoc; 2019 Nov; 26(11):1247-1254. PubMed ID: 31512729 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis on Facebook post interaction using DNN, ELM and LSTM. Khan SA; Chang HT PLoS One; 2019; 14(11):e0224452. PubMed ID: 31714918 [TBL] [Abstract][Full Text] [Related]
10. Using a Large Margin Context-Aware Convolutional Neural Network to Automatically Extract Disease-Disease Association from Literature: Comparative Analytic Study. Lai PT; Lu WL; Kuo TR; Chung CR; Han JC; Tsai RT; Horng JT JMIR Med Inform; 2019 Nov; 7(4):e14502. PubMed ID: 31769759 [TBL] [Abstract][Full Text] [Related]
11. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. Cocos A; Fiks AG; Masino AJ J Am Med Inform Assoc; 2017 Jul; 24(4):813-821. PubMed ID: 28339747 [TBL] [Abstract][Full Text] [Related]
12. PISTON: Predicting drug indications and side effects using topic modeling and natural language processing. Jang G; Lee T; Hwang S; Park C; Ahn J; Seo S; Hwang Y; Yoon Y J Biomed Inform; 2018 Nov; 87():96-107. PubMed ID: 30268842 [TBL] [Abstract][Full Text] [Related]
13. Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation. Xie J; Liu X; Dajun Zeng D J Am Med Inform Assoc; 2018 Jan; 25(1):72-80. PubMed ID: 28505280 [TBL] [Abstract][Full Text] [Related]
14. Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models. Aldhyani THH; Alsubari SN; Alshebami AS; Alkahtani H; Ahmed ZAT Int J Environ Res Public Health; 2022 Oct; 19(19):. PubMed ID: 36231935 [TBL] [Abstract][Full Text] [Related]
15. Using Twitter Data to Monitor Natural Disaster Social Dynamics: A Recurrent Neural Network Approach with Word Embeddings and Kernel Density Estimation. Hernandez-Suarez A; Sanchez-Perez G; Toscano-Medina K; Perez-Meana H; Portillo-Portillo J; And Luis VS; Javier García Villalba L Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30979067 [TBL] [Abstract][Full Text] [Related]
16. Mining heterogeneous network for drug repositioning using phenotypic information extracted from social media and pharmaceutical databases. Yang CC; Zhao M Artif Intell Med; 2019 May; 96():80-92. PubMed ID: 31164213 [TBL] [Abstract][Full Text] [Related]
17. deepBioWSD: effective deep neural word sense disambiguation of biomedical text data. Pesaranghader A; Matwin S; Sokolova M; Pesaranghader A J Am Med Inform Assoc; 2019 May; 26(5):438-446. PubMed ID: 30811548 [TBL] [Abstract][Full Text] [Related]
18. A Machine Learning Approach for the Detection and Characterization of Illicit Drug Dealers on Instagram: Model Evaluation Study. Li J; Xu Q; Shah N; Mackey TK J Med Internet Res; 2019 Jun; 21(6):e13803. PubMed ID: 31199298 [TBL] [Abstract][Full Text] [Related]
19. Overview of the 8th Social Media Mining for Health Applications (#SMM4H) shared tasks at the AMIA 2023 Annual Symposium. Klein AZ; Banda JM; Guo Y; Schmidt AL; Xu D; Flores Amaro I; Rodriguez-Esteban R; Sarker A; Gonzalez-Hernandez G J Am Med Inform Assoc; 2024 Apr; 31(4):991-996. PubMed ID: 38218723 [TBL] [Abstract][Full Text] [Related]
20. Multiview Convolutional Neural Networks for Multidocument Extractive Summarization. Zhang Y; Er MJ; Zhao R; Pratama M IEEE Trans Cybern; 2017 Oct; 47(10):3230-3242. PubMed ID: 27913371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]