These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30951524)

  • 41. Conformational diversity of bacterial FabH: implications for molecular recognition specificity.
    Mittal A; Johnson ME
    J Mol Graph Model; 2015 Feb; 55():115-22. PubMed ID: 25437098
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Filament formation of the Escherichia coli actin-related protein, MreB, in fission yeast.
    Srinivasan R; Mishra M; Murata-Hori M; Balasubramanian MK
    Curr Biol; 2007 Feb; 17(3):266-72. PubMed ID: 17276920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The long journey: actin on the road to pro- and eukaryotic cells.
    Jockusch BM; Graumann PL
    Rev Physiol Biochem Pharmacol; 2011; 161():67-85. PubMed ID: 21710382
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Filament structure, organization, and dynamics in MreB sheets.
    Popp D; Narita A; Maeda K; Fujisawa T; Ghoshdastider U; Iwasa M; Maéda Y; Robinson RC
    J Biol Chem; 2010 May; 285(21):15858-65. PubMed ID: 20223832
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.
    Bharat TA; Murshudov GN; Sachse C; Löwe J
    Nature; 2015 Jul; 523(7558):106-10. PubMed ID: 25915019
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular mechanism of bundle formation by the bacterial actin ParM.
    Popp D; Narita A; Iwasa M; Maéda Y; Robinson RC
    Biochem Biophys Res Commun; 2010 Jan; 391(4):1598-603. PubMed ID: 20026051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structure of the cell division protein FtsA from Thermotoga maritima.
    van den Ent F; Löwe J
    EMBO J; 2000 Oct; 19(20):5300-7. PubMed ID: 11032797
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus.
    Kim SY; Gitai Z; Kinkhabwala A; Shapiro L; Moerner WE
    Proc Natl Acad Sci U S A; 2006 Jul; 103(29):10929-34. PubMed ID: 16829583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polymerization properties of the Thermotoga maritima actin MreB: roles of temperature, nucleotides, and ions.
    Bean GJ; Amann KJ
    Biochemistry; 2008 Jan; 47(2):826-35. PubMed ID: 18095710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Understanding nucleotide-regulated FtsZ filament dynamics and the monomer assembly switch with large-scale atomistic simulations.
    Ramírez-Aportela E; López-Blanco JR; Andreu JM; Chacón P
    Biophys J; 2014 Nov; 107(9):2164-76. PubMed ID: 25418101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochemical implications of a three-dimensional model of monomeric actin bound to magnesium-chelated ATP.
    Takamoto K; Kamal JK; Chance MR
    Structure; 2007 Jan; 15(1):39-51. PubMed ID: 17223531
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bacterial actin and tubulin homologs in cell growth and division.
    Busiek KK; Margolin W
    Curr Biol; 2015 Mar; 25(6):R243-R254. PubMed ID: 25784047
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coarse-grained modeling of the actin filament derived from atomistic-scale simulations.
    Chu JW; Voth GA
    Biophys J; 2006 Mar; 90(5):1572-82. PubMed ID: 16361345
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new internal mode in F-actin helps explain the remarkable evolutionary conservation of actin's sequence and structure.
    Galkin VE; VanLoock MS; Orlova A; Egelman EH
    Curr Biol; 2002 Apr; 12(7):570-5. PubMed ID: 11937026
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The structure of bacterial ParM filaments.
    Orlova A; Garner EC; Galkin VE; Heuser J; Mullins RD; Egelman EH
    Nat Struct Mol Biol; 2007 Oct; 14(10):921-6. PubMed ID: 17873883
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacterial actin homolog ParM: arguments for an apolar, antiparallel double helix.
    Erickson HP
    J Mol Biol; 2012 Sep; 422(4):461-3. PubMed ID: 22651984
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamics of bacterial cytoskeletal elements.
    Graumann PL
    Cell Motil Cytoskeleton; 2009 Nov; 66(11):909-14. PubMed ID: 19466751
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chlamydia trachomatis protein CT009 is a structural and functional homolog to the key morphogenesis component RodZ and interacts with division septal plane localized MreB.
    Kemege KE; Hickey JM; Barta ML; Wickstrum J; Balwalli N; Lovell S; Battaile KP; Hefty PS
    Mol Microbiol; 2015 Feb; 95(3):365-82. PubMed ID: 25382739
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Increasing complexity of the bacterial cytoskeleton.
    Møller-Jensen J; Löwe J
    Curr Opin Cell Biol; 2005 Feb; 17(1):75-81. PubMed ID: 15661522
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family.
    Sánchez M; Valencia A; Ferrándiz MJ; Sander C; Vicente M
    EMBO J; 1994 Oct; 13(20):4919-25. PubMed ID: 7957059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.