These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30951525)

  • 1. Modeling neuronal avalanches and long-range temporal correlations at the emergence of collective oscillations: Continuously varying exponents mimic M/EEG results.
    Dalla Porta L; Copelli M
    PLoS Comput Biol; 2019 Apr; 15(4):e1006924. PubMed ID: 30951525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-range temporal correlations in electroencephalographic oscillations: Relation to topography, frequency band, age and gender.
    Nikulin VV; Brismar T
    Neuroscience; 2005; 130(2):549-58. PubMed ID: 15664711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical behaviour of the stochastic Wilson-Cowan model.
    de Candia A; Sarracino A; Apicella I; de Arcangelis L
    PLoS Comput Biol; 2021 Aug; 17(8):e1008884. PubMed ID: 34460811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal avalanches and time-frequency representations in stimulus-evoked activity.
    Arviv O; Goldstein A; Shriki O
    Sci Rep; 2019 Sep; 9(1):13319. PubMed ID: 31527749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical analyses support power law distributions found in neuronal avalanches.
    Klaus A; Yu S; Plenz D
    PLoS One; 2011; 6(5):e19779. PubMed ID: 21720544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws.
    Palva JM; Zhigalov A; Hirvonen J; Korhonen O; Linkenkaer-Hansen K; Palva S
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3585-90. PubMed ID: 23401536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of fast- and slow-timescale neuronal dynamics in human MEG and SEEG.
    Zhigalov A; Arnulfo G; Nobili L; Palva S; Palva JM
    J Neurosci; 2015 Apr; 35(13):5385-96. PubMed ID: 25834062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subsampled Directed-Percolation Models Explain Scaling Relations Experimentally Observed in the Brain.
    Carvalho TTA; Fontenele AJ; Girardi-Schappo M; Feliciano T; Aguiar LAA; Silva TPL; de Vasconcelos NAP; Carelli PV; Copelli M
    Front Neural Circuits; 2020; 14():576727. PubMed ID: 33519388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical properties of avalanches in networks.
    Larremore DB; Carpenter MY; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066131. PubMed ID: 23005186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avalanche dynamics of human brain oscillations: relation to critical branching processes and temporal correlations.
    Poil SS; van Ooyen A; Linkenkaer-Hansen K
    Hum Brain Mapp; 2008 Jul; 29(7):770-7. PubMed ID: 18454457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches.
    Wu S; Zhang Y; Cui Y; Li H; Wang J; Guo L; Xia Y; Yao D; Xu P; Guo D
    Neural Netw; 2019 Feb; 110():91-103. PubMed ID: 30508808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-range temporal correlations and scaling behavior in human brain oscillations.
    Linkenkaer-Hansen K; Nikouline VV; Palva JM; Ilmoniemi RJ
    J Neurosci; 2001 Feb; 21(4):1370-7. PubMed ID: 11160408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG, temporal correlations, and avalanches.
    Benayoun M; Kohrman M; Cowan J; van Drongelen W
    J Clin Neurophysiol; 2010 Dec; 27(6):458-64. PubMed ID: 21076326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal critical dynamics in high resolution neuronal avalanche data.
    Friedman N; Ito S; Brinkman BA; Shimono M; DeVille RE; Dahmen KA; Beggs JM; Butler TC
    Phys Rev Lett; 2012 May; 108(20):208102. PubMed ID: 23003192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks.
    Poil SS; Hardstone R; Mansvelder HD; Linkenkaer-Hansen K
    J Neurosci; 2012 Jul; 32(29):9817-23. PubMed ID: 22815496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avalanches in a stochastic model of spiking neurons.
    Benayoun M; Cowan JD; van Drongelen W; Wallace E
    PLoS Comput Biol; 2010 Jul; 6(7):e1000846. PubMed ID: 20628615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximum likelihood estimators for truncated and censored power-law distributions show how neuronal avalanches may be misevaluated.
    Langlois D; Cousineau D; Thivierge JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012709. PubMed ID: 24580259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity.
    Pittorino F; Ibáñez-Berganza M; di Volo M; Vezzani A; Burioni R
    Phys Rev Lett; 2017 Mar; 118(9):098102. PubMed ID: 28306273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural avalanches at the critical point between replay and non-replay of spatiotemporal patterns.
    Scarpetta S; de Candia A
    PLoS One; 2013; 8(6):e64162. PubMed ID: 23840301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling behavior in probabilistic neuronal cellular automata.
    Manchanda K; Yadav AC; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012704. PubMed ID: 23410356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.