BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30951631)

  • 1. Adjusting Fermi Level of Graphene by Controlling the Linker Lengths of Dipolar Molecules.
    Zhang M; Yu J; He J; Huang C
    Langmuir; 2019 Apr; 35(16):5448-5454. PubMed ID: 30951631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Raman Enhancement of a Dipolar Molecule on CVD Graphene].
    Leng YD; Zhou JQ; Zhang HC; Huang CS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3087-91. PubMed ID: 26978914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Fermi Level of Graphene by Two-Dimensional Metals for Raman Detection of Molecules.
    Zhang N; Zhang K; Zou M; Maniyara RA; Bowen TA; Schrecengost JR; Jain A; Zhou D; Dong C; Yu Z; Liu H; Giebink NC; Robinson JA; Hu W; Huang S; Terrones M
    ACS Nano; 2024 Mar; 18(12):8876-8884. PubMed ID: 38497598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.
    Feng S; Dos Santos MC; Carvalho BR; Lv R; Li Q; Fujisawa K; Elías AL; Lei Y; Perea-López N; Endo M; Pan M; Pimenta MA; Terrones M
    Sci Adv; 2016 Jul; 2(7):e1600322. PubMed ID: 27532043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere.
    Xu H; Chen Y; Xu W; Zhang H; Kong J; Dresselhaus MS; Zhang J
    Small; 2011 Oct; 7(20):2945-52. PubMed ID: 21901822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular selectivity of graphene-enhanced Raman scattering.
    Huang S; Ling X; Liang L; Song Y; Fang W; Zhang J; Kong J; Meunier V; Dresselhaus MS
    Nano Lett; 2015 May; 15(5):2892-901. PubMed ID: 25821897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene.
    Xu H; Xie L; Zhang H; Zhang J
    ACS Nano; 2011 Jul; 5(7):5338-44. PubMed ID: 21678950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipole-Induced Raman Enhancement Using Noncovalent Azobenzene-Functionalized Self-Assembled Monolayers on Graphene Terraces.
    Brill AR; Biswas S; Caspary Toroker M; de Ruiter G; Koren E
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10271-10278. PubMed ID: 33591709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent functionalization of dipole-modulating molecules on trilayer graphene: an avenue for graphene-interfaced molecular machines.
    Nguyen P; Li J; Sreeprasad TS; Jasuja K; Mohanty N; Ikenberry M; Hohn K; Shenoy VB; Berry V
    Small; 2013 Nov; 9(22):3823-8. PubMed ID: 23713056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-enhanced Raman spectroscopy of thymine adsorbed on single-layer graphene.
    Fesenko O; Dovbeshko G; Dementjev A; Karpicz R; Kaplas T; Svirko Y
    Nanoscale Res Lett; 2015; 10():163. PubMed ID: 25897307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy.
    Silver A; Kitadai H; Liu H; Granzier-Nakajima T; Terrones M; Ling X; Huang S
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30986978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Evaluation of Graphene Nanostructures in GERS Platforms for Pesticide Detection.
    Thakkar S; De Luca L; Gaspa S; Mariani A; Garroni S; Iacomini A; Stagi L; Innocenzi P; Malfatti L
    ACS Omega; 2022 Feb; 7(7):5670-5678. PubMed ID: 35224328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lighting up the Raman signal of molecules in the vicinity of graphene related materials.
    Ling X; Huang S; Deng S; Mao N; Kong J; Dresselhaus MS; Zhang J
    Acc Chem Res; 2015 Jul; 48(7):1862-70. PubMed ID: 26056861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-layer effect in graphene-enhanced Raman scattering.
    Ling X; Zhang J
    Small; 2010 Sep; 6(18):2020-5. PubMed ID: 20730826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Doping in Graphene by Light-Switchable Molecules.
    Shashikala HB; Nicolas CI; Wang XQ
    J Phys Chem C Nanomater Interfaces; 2012 Dec; 116(49):26102-26105. PubMed ID: 23316261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency shift in graphene-enhanced Raman signal of molecules.
    Yaghobian F; Korn T; Schüller C
    Chemphyschem; 2012 Dec; 13(18):4271-5. PubMed ID: 23132764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Surface-Enhanced Raman Scattering Based on 3D Graphene-TiO
    Zheng T; Feng E; Wang Z; Gong X; Tian Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36596-36605. PubMed ID: 28980796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocontrolled molecular structural transition and doping in graphene.
    Peimyoo N; Li J; Shang J; Shen X; Qiu C; Xie L; Huang W; Yu T
    ACS Nano; 2012 Oct; 6(10):8878-86. PubMed ID: 22966836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy.
    Ling X; Wu J; Xu W; Zhang J
    Small; 2012 May; 8(9):1365-72. PubMed ID: 22359411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-enhanced Raman scattering on single layer and bilayers of pristine and hydrogenated graphene.
    Valeš V; Drogowska-Horná K; Guerra VLP; Kalbáč M
    Sci Rep; 2020 Mar; 10(1):4516. PubMed ID: 32161329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.