These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 30951810)

  • 1. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems.
    Li L; Liu X; Wei K; Lu Y; Jiang W
    Biotechnol Adv; 2019; 37(5):730-745. PubMed ID: 30951810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes.
    Li L; Wei K; Liu X; Wu Y; Zheng G; Chen S; Jiang W; Lu Y
    Metab Eng; 2019 Mar; 52():153-167. PubMed ID: 30529239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Step-by-Step Protocol for COMPASS, a Synthetic Biology Tool for Combinatorial Gene Assembly.
    Naseri G; Mueller-Roeber B
    Methods Mol Biol; 2020; 2205():277-303. PubMed ID: 32809205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
    Cernak P; Estrela R; Poddar S; Skerker JM; Cheng YF; Carlson AK; Chen B; Glynn VM; Furlan M; Ryan OW; Donnelly MK; Arkin AP; Taylor JW; Cate JHD
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Based Technologies for Metabolic Engineering in Cyanobacteria.
    Behler J; Vijay D; Hess WR; Akhtar MK
    Trends Biotechnol; 2018 Oct; 36(10):996-1010. PubMed ID: 29937051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and Efficient One-Step Metabolic Pathway Integration in E. coli.
    Bassalo MC; Garst AD; Halweg-Edwards AL; Grau WC; Domaille DW; Mutalik VK; Arkin AP; Gill RT
    ACS Synth Biol; 2016 Jul; 5(7):561-8. PubMed ID: 27072506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9-assisted native end-joining editing offers a simple strategy for efficient genetic engineering in Escherichia coli.
    Huang C; Ding T; Wang J; Wang X; Guo L; Wang J; Zhu L; Bi C; Zhang X; Ma X; Huo YX
    Appl Microbiol Biotechnol; 2019 Oct; 103(20):8497-8509. PubMed ID: 31501938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel approach for Escherichia coli genome editing combining in vivo cloning and targeted long-length chromosomal insertion.
    Hook CD; Samsonov VV; Ublinskaya AA; Kuvaeva TM; Andreeva EV; Gorbacheva LY; Stoynova NV
    J Microbiol Methods; 2016 Nov; 130():83-91. PubMed ID: 27567891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.
    Wagner JM; Alper HS
    Fungal Genet Biol; 2016 Apr; 89():126-136. PubMed ID: 26701310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal Microorganism Development: Integrating Top-Down Biological Engineering with Bottom-Up Rational Design.
    Dahabieh MS; Thevelein JM; Gibson B
    Trends Biotechnol; 2020 Mar; 38(3):241-253. PubMed ID: 31653446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homology-dependent recombination of large synthetic pathways into E. coli genome via λ-Red and CRISPR/Cas9 dependent selection methodology.
    Su B; Song D; Zhu H
    Microb Cell Fact; 2020 May; 19(1):108. PubMed ID: 32448328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Homologous Recombination Efficiency in
    Gao J; Ye C; Cheng J; Jiang L; Yuan X; Lian J
    ACS Synth Biol; 2022 Feb; 11(2):547-553. PubMed ID: 35061355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic biology for manufacturing chemicals: constraints drive the use of non-conventional microbial platforms.
    Czajka J; Wang Q; Wang Y; Tang YJ
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7427-7434. PubMed ID: 28884354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 16. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica.
    Schwartz C; Frogue K; Ramesh A; Misa J; Wheeldon I
    Biotechnol Bioeng; 2017 Dec; 114(12):2896-2906. PubMed ID: 28832943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic biology advances and applications in the biotechnology industry: a perspective.
    Katz L; Chen YY; Gonzalez R; Peterson TC; Zhao H; Baltz RH
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):449-461. PubMed ID: 29915997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic biology approaches to actinomycete strain improvement.
    Breitling R; Avbelj M; Bilyk O; Carratore FD; Filisetti A; Hanko EKR; Iorio M; Redondo RP; Reyes F; Rudden M; Severi E; Slemc L; Schmidt K; Whittall DR; Donadio S; García AR; Genilloud O; Kosec G; De Lucrezia D; Petković H; Thomas G; Takano E
    FEMS Microbiol Lett; 2021 Jun; 368(10):. PubMed ID: 34057181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling plant synthetic biology through genome engineering.
    Baltes NJ; Voytas DF
    Trends Biotechnol; 2015 Feb; 33(2):120-31. PubMed ID: 25496918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.