These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30952002)

  • 1. Removal of heavy metals by aged zero-valent iron from flue-gas-desulfurization brine under high salt and temperature conditions.
    Zhang W; Oswal H; Renew J; Ellison K; Huang CH
    J Hazard Mater; 2019 Jul; 373():572-579. PubMed ID: 30952002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solidification/stabilization of flue gas desulfurization brine and coal fly ash for heavy metals and chloride immobilization: Effects of S/S conditions and zero-valent-iron pretreatment.
    Zhang W; Oswal H; Renew JE; Gallagher B; Ellison K; Huang CH
    J Hazard Mater; 2020 Feb; 384():121463. PubMed ID: 31685317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pilot-scale demonstration of the hybrid zero-valent iron process for treating flue-gas-desulfurization wastewater: part II.
    Huang YH; Peddi PK; Zeng H; Tang CL; Teng X
    Water Sci Technol; 2013; 67(2):239-46. PubMed ID: 23168619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal removal from wastewater using zero-valent iron nanoparticles.
    Chen SY; Chen WH; Shih CJ
    Water Sci Technol; 2008; 58(10):1947-54. PubMed ID: 19039174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass transport release of heavy metal oxyanions from solidified/stabilized co-disposed flue gas desulfurization brine and coal fly ash monoliths.
    Renew JE; Zhang W; Huang CH
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29945-29957. PubMed ID: 33576962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater.
    Han W; Fu F; Cheng Z; Tang B; Wu S
    J Hazard Mater; 2016 Jan; 302():437-446. PubMed ID: 26521089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing.
    Sun Y; Chen SS; Tsang DCW; Graham NJD; Ok YS; Feng Y; Li XD
    Chemosphere; 2017 Jan; 167():163-170. PubMed ID: 27718428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance enhancement of zero valent iron based systems using depassivators: Optimization and kinetic mechanisms.
    Ansaf KVK; Ambika S; Nambi IM
    Water Res; 2016 Oct; 102():436-444. PubMed ID: 27395028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.
    Ayala-Parra P; Sierra-Alvarez R; Field JA
    J Hazard Mater; 2016 May; 308():97-105. PubMed ID: 26808248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot-scale demonstration of the hybrid zero-valent iron process for treating flue-gas-desulfurization wastewater: part I.
    Huang YH; Peddi PK; Zeng H; Tang CL; Teng X
    Water Sci Technol; 2013; 67(1):16-23. PubMed ID: 23128616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process.
    Chen SS; Cheng CY; Li CW; Chai PH; Chang YM
    J Hazard Mater; 2007 Apr; 142(1-2):362-7. PubMed ID: 16987595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of NOx removal from flue gas by zero valent iron.
    Chen SS; Cheng CY; Chang JC; Tang CH
    J Air Waste Manag Assoc; 2006 Jun; 56(6):869-75. PubMed ID: 16805412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of heavy metals from landfill leachate using zero valent iron and granular activated carbon.
    Bilardi S; CalabrĂ² PS; Greco R; Moraci N
    Environ Technol; 2020 Jan; 41(4):498-510. PubMed ID: 30028646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenate removal by zero-valent iron in oxic condition: the role of Fe(II) and selenate removal mechanism.
    Yoon IH; Bang S; Kim KW; Kim MG; Park SY; Choi WK
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1081-90. PubMed ID: 25943509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid zero valent iron (ZVI)/H
    Lee SD; Mallampati SR; Lee BH
    J Air Waste Manag Assoc; 2017 Apr; 67(4):475-487. PubMed ID: 27802127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desulfurization: Critical step towards enhanced selenium removal from industrial effluents.
    Staicu LC; Morin-Crini N; Crini G
    Chemosphere; 2017 Apr; 172():111-119. PubMed ID: 28063313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review.
    Fu F; Dionysiou DD; Liu H
    J Hazard Mater; 2014 Feb; 267():194-205. PubMed ID: 24457611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced effect of pyrite on the removal of metronidazole by zero valent iron.
    Linting H; Kun C; Huaping D; Jianfa L; Yimin L
    J Colloid Interface Sci; 2021 Oct; 600():775-783. PubMed ID: 34051465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of EDTA from low pH printed-circuit board wastewater in a fluidized zero valent iron reactor.
    Chen SS; Hsu HD; Lin YJ; Chin PY
    Water Sci Technol; 2008; 58(3):661-7. PubMed ID: 18725736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe(2+) and corrosion products, and selenate removal mechanisms.
    Tang C; Huang YH; Zeng H; Zhang Z
    Water Res; 2014 Dec; 67():166-74. PubMed ID: 25269108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.