These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 30952153)
1. Lateral scaling and positioning effects of top-gate electrodes on single-molecule field-effect transistors. Xu Y; Wang M; Fang C; Cui B; Ji G; Zhao W; Liu D; Wang C; Qin M J Phys Condens Matter; 2019 Jul; 31(28):285302. PubMed ID: 30952153 [TBL] [Abstract][Full Text] [Related]
2. Control of Threshold Voltage for Top-Gated Ambipolar Field-Effect Transistor by Gate Buffer Layer. Khim D; Shin EY; Xu Y; Park WT; Jin SH; Noh YY ACS Appl Mater Interfaces; 2016 Jul; 8(27):17416-20. PubMed ID: 27323003 [TBL] [Abstract][Full Text] [Related]
3. Electrostatic Gate Control in Molecular Transistors. Song H Top Curr Chem (Cham); 2018 Sep; 376(5):37. PubMed ID: 30194540 [TBL] [Abstract][Full Text] [Related]
4. Biosensor Based on In₂O₂ Electrolyte Gated Thin Film Transistor With Integrated On-Chip Gate Electrode. Yang P; Rong H; Wu Z; Pei Y IEEE Trans Nanobioscience; 2021 Jul; 20(3):287-290. PubMed ID: 33710957 [TBL] [Abstract][Full Text] [Related]
5. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers. Majima Y; Hackenberger G; Azuma Y; Kano S; Matsuzaki K; Susaki T; Sakamoto M; Teranishi T Sci Technol Adv Mater; 2017; 18(1):374-380. PubMed ID: 28634499 [TBL] [Abstract][Full Text] [Related]
6. Electron irradiation of multilayer [Formula: see text] field effect transistors. Di Bartolomeo A; Urban F; Pelella A; Grillo A; Passacantando M; Liu X; Giubileo F Nanotechnology; 2020 Sep; 31(37):375204. PubMed ID: 32428882 [TBL] [Abstract][Full Text] [Related]
7. Effect of the orientation of nitro group on the electronic transport properties in single molecular field-effect transistors. Xu Y; Cui B; Ji G; Li D; Liu D Phys Chem Chem Phys; 2013 Jan; 15(3):832-6. PubMed ID: 23202774 [TBL] [Abstract][Full Text] [Related]
8. Theoretical study of the source-drain current and gate leakage current to understand the graphene field-effect transistors. Yu C; Liu H; Ni W; Gao N; Zhao J; Zhang H Phys Chem Chem Phys; 2011 Feb; 13(8):3461-7. PubMed ID: 21240394 [TBL] [Abstract][Full Text] [Related]
9. Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach. Yun J; Lee G; Kim KS J Phys Chem Lett; 2016 Jul; 7(13):2478-82. PubMed ID: 27299184 [TBL] [Abstract][Full Text] [Related]
10. Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped molecule connected to graphene nanoribbon electrodes. Saha KK; Nikolić BK; Meunier V; Lu W; Bernholc J Phys Rev Lett; 2010 Dec; 105(23):236803. PubMed ID: 21231493 [TBL] [Abstract][Full Text] [Related]
11. Issues of nanoelectronics: a possible roadmap. Wang KL J Nanosci Nanotechnol; 2002; 2(3-4):235-66. PubMed ID: 12908252 [TBL] [Abstract][Full Text] [Related]
12. Gate Spacer Investigation for Improving the Speed of High-Frequency Carbon Nanotube-Based Field-Effect Transistors. Hartmann M; Tittmann-Otto J; Böttger S; Heldt G; Claus M; Schulz SE; Schröter M; Hermann S ACS Appl Mater Interfaces; 2020 Jun; 12(24):27461-27466. PubMed ID: 32436374 [TBL] [Abstract][Full Text] [Related]
13. Enhancing Gating Performance in Organic Molecular Field-Effect Transistors by Introducing Polar Azulene Components. Xu Y; Liu D; Wang M Chemistry; 2023 Nov; 29(65):e202301294. PubMed ID: 37589330 [TBL] [Abstract][Full Text] [Related]
14. Modelling of nanoscale multi-gate transistors affected by atomistic interface roughness. Nagy D; Aldegunde M; Elmessary MA; García-Loureiro AJ; Seoane N; Kalna K J Phys Condens Matter; 2018 Apr; 30(14):144006. PubMed ID: 29465038 [TBL] [Abstract][Full Text] [Related]
15. Contacting versus insulated gate electrode for Si nanoribbon field-effect sensors operating in electrolyte. Chen S; Zhang SL Anal Chem; 2011 Dec; 83(24):9546-51. PubMed ID: 22085428 [TBL] [Abstract][Full Text] [Related]
16. Effect of molybdenum disulfide nanoribbon on quantum transport of graphene. Gao G; Li Z; Chen M; Xie Y; Wang Y J Phys Condens Matter; 2017 Nov; 29(43):435001. PubMed ID: 28829340 [TBL] [Abstract][Full Text] [Related]
17. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics. Jia C; Ma B; Xin N; Guo X Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024 [TBL] [Abstract][Full Text] [Related]
18. Electric-Field Control of Interfering Transport Pathways in a Single-Molecule Anthraquinone Transistor. Koole M; Thijssen JM; Valkenier H; Hummelen JC; van der Zant HS Nano Lett; 2015 Aug; 15(8):5569-73. PubMed ID: 26182342 [TBL] [Abstract][Full Text] [Related]
19. Extrinsic Rashba spin-orbit coupling effect on silicene spin polarized field effect transistors. Pournaghavi N; Esmaeilzadeh M; Abrishamifar A; Ahmadi S J Phys Condens Matter; 2017 Apr; 29(14):145501. PubMed ID: 28106534 [TBL] [Abstract][Full Text] [Related]
20. Unique device operations by combining optical-memory effect and electrical-gate modulation in a photochromism-based dual-gate transistor. Ishiguro Y; Hayakawa R; Yasuda T; Chikyow T; Wakayama Y ACS Appl Mater Interfaces; 2013 Oct; 5(19):9726-31. PubMed ID: 24040885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]