These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30952164)

  • 1. Ocular tracking of occluded ballistic trajectories: Effects of visual context and of target law of motion.
    Delle Monache S; Lacquaniti F; Bosco G
    J Vis; 2019 Apr; 19(4):13. PubMed ID: 30952164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eye movements and manual interception of ballistic trajectories: effects of law of motion perturbations and occlusions.
    Delle Monache S; Lacquaniti F; Bosco G
    Exp Brain Res; 2015 Feb; 233(2):359-74. PubMed ID: 25311389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5+, and the intraparietal cortex.
    Delle Monache S; Lacquaniti F; Bosco G
    J Neurophysiol; 2017 Sep; 118(3):1809-1823. PubMed ID: 28701531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catching what we can't see: manual interception of occluded fly-ball trajectories.
    Bosco G; Delle Monache S; Lacquaniti F
    PLoS One; 2012; 7(11):e49381. PubMed ID: 23166653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topographic and directional organization of visual motion inputs for the initiation of horizontal and vertical smooth-pursuit eye movements in monkeys.
    Lisberger SG; Pavelko TA
    J Neurophysiol; 1989 Jan; 61(1):173-85. PubMed ID: 2918342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contextual effects on smooth-pursuit eye movements.
    Spering M; Gegenfurtner KR
    J Neurophysiol; 2007 Feb; 97(2):1353-67. PubMed ID: 17135467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor scaling by viewing distance of early visual motion signals during smooth pursuit.
    Zhou HH; Wei M; Angelaki DE
    J Neurophysiol; 2002 Nov; 88(5):2880-5. PubMed ID: 12424322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covert enaction at work: Recording the continuous movements of visuospatial attention to visible or imagined targets by means of Steady-State Visual Evoked Potentials (SSVEPs).
    Gregori Grgič R; Calore E; de'Sperati C
    Cortex; 2016 Jan; 74():31-52. PubMed ID: 26615517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrapolation of vertical target motion through a brief visual occlusion.
    Zago M; Iosa M; Maffei V; Lacquaniti F
    Exp Brain Res; 2010 Mar; 201(3):365-84. PubMed ID: 19882150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual motion processing for the initiation of smooth-pursuit eye movements in humans.
    Tychsen L; Lisberger SG
    J Neurophysiol; 1986 Oct; 56(4):953-68. PubMed ID: 3783238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Keep your eyes on the ball: smooth pursuit eye movements enhance prediction of visual motion.
    Spering M; Schütz AC; Braun DI; Gegenfurtner KR
    J Neurophysiol; 2011 Apr; 105(4):1756-67. PubMed ID: 21289135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrast and assimilation in motion perception and smooth pursuit eye movements.
    Spering M; Gegenfurtner KR
    J Neurophysiol; 2007 Sep; 98(3):1355-63. PubMed ID: 17634337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic causal modelling of eye movements during pursuit: Confirming precision-encoding in V1 using MEG.
    Adams RA; Bauer M; Pinotsis D; Friston KJ
    Neuroimage; 2016 May; 132():175-189. PubMed ID: 26921713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of a naturally occurring asymmetry in vertical smooth pursuit eye movements in a monkey.
    Grasse KL; Lisberger SG
    J Neurophysiol; 1992 Jan; 67(1):164-79. PubMed ID: 1552317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can representational trajectory reveal the nature of an internal model of gravity?
    De Sá Teixeira N; Hecht H
    Atten Percept Psychophys; 2014 May; 76(4):1106-20. PubMed ID: 24470258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal properties of visual motion signals for the initiation of smooth pursuit eye movements in monkeys.
    Krauzlis RJ; Lisberger SG
    J Neurophysiol; 1994 Jul; 72(1):150-62. PubMed ID: 7965001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manual coordination with intermittent targets: velocity information for prospective control.
    Fine JM; Ward KL; Amazeen EL
    Acta Psychol (Amst); 2014 Jun; 149():24-31. PubMed ID: 24657827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive responses of periarcuate pursuit neurons to visual target motion.
    Fukushima K; Yamanobe T; Shinmei Y; Fukushima J
    Exp Brain Res; 2002 Jul; 145(1):104-20. PubMed ID: 12070750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptive fields for smooth pursuit eye movements and motion perception.
    Debono K; Schütz AC; Spering M; Gegenfurtner KR
    Vision Res; 2010 Dec; 50(24):2729-39. PubMed ID: 20932990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual tracking in monkeys: evidence for short-latency suppression of the vestibuloocular reflex.
    Lisberger SG
    J Neurophysiol; 1990 Apr; 63(4):676-88. PubMed ID: 2341868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.