These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30952194)

  • 1. Mechanical and chemical characterisation of bioresorbable polymeric stent over two-year in vitro degradation.
    Naseem R; Zhao L; Silberschmidt V; Liu Y; Scaife O; Willcock H; Eswaran S; Hossainy S
    J Biomater Appl; 2019 Jul; 34(1):61-73. PubMed ID: 30952194
    [No Abstract]   [Full Text] [Related]  

  • 2. Physicochemical characterisation of novel ultra-thin biodegradable scaffolds for peripheral nerve repair.
    Sun M; Downes S
    J Mater Sci Mater Med; 2009 May; 20(5):1181-92. PubMed ID: 19132511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties and in vitro degradation of bioresorbable knitted stents.
    Nuutinen JP; Välimaa T; Clerc C; Törmälä P
    J Biomater Sci Polym Ed; 2002; 13(12):1313-23. PubMed ID: 12555898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Study of Degradation Behavior of Bioresorbable Cardiovascular Scaffolds.
    Luo Q; Huang C; Wang S; Meng J; Li Z; Chang Z; Zhu Y; Hua Z
    Cardiovasc Eng Technol; 2015 Mar; 6(1):71-9. PubMed ID: 26577104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-loaded bioresorbable fibers and expandable stents: Mechanical properties and protein release.
    Zilberman M; Schwade ND; Eberhart RC
    J Biomed Mater Res B Appl Biomater; 2004 Apr; 69(1):1-10. PubMed ID: 15015203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds.
    Wang PJ; Ferralis N; Conway C; Grossman JC; Edelman ER
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):2640-2645. PubMed ID: 29483243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knitted polylactide 96/4 L/D structures and scaffolds for tissue engineering: shelf life, in vitro and in vivo studies.
    Ellä V; Annala T; Länsman S; Nurminen M; Kellomäki M
    Biomatter; 2011; 1(1):102-13. PubMed ID: 23507732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation-induced changes of mechanical properties of an electro-spun polyester-urethane scaffold for soft tissue regeneration.
    Krynauw H; Bruchmüller L; Bezuidenhout D; Zilla P; Franz T
    J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):359-68. PubMed ID: 21948379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber-reinforced bioactive and bioabsorbable hybrid composites.
    Huttunen M; Törmälä P; Godinho P; Kellomäki M
    Biomed Mater; 2008 Sep; 3(3):034106. PubMed ID: 18689925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineering stent model with long fiber-reinforced thermoplastic technique.
    Lin MC; Lin JH; Huang CY; Chen YS
    J Mater Sci Mater Med; 2020 Nov; 31(11):107. PubMed ID: 33159595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometry in bioresorbable polymer development, degradation and drug-release tracking.
    Rizzarelli P; Rapisarda M; Valenti G
    Rapid Commun Mass Spectrom; 2020 Aug; 34 Suppl 2():e8697. PubMed ID: 31834664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A shape memory stent of poly(ε-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis.
    Yu X; Wang L; Huang M; Gong T; Li W; Cao Y; Ji D; Wang P; Wang J; Zhou S
    J Mater Sci Mater Med; 2012 Feb; 23(2):581-9. PubMed ID: 22057969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology.
    Sheng SJ; Hu X; Wang F; Ma QY; Gu MF
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation behaviors of bioabsorbable P3/4HB monofilament suture in vitro and in vivo.
    Chen X; Yang X; Pan J; Wang L; Xu K
    J Biomed Mater Res B Appl Biomater; 2010 Feb; 92(2):447-55. PubMed ID: 19927337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biodegradable and biocompatible PVA-citric acid polyester with potential applications as matrix for vascular tissue engineering.
    Thomas LV; Arun U; Remya S; Nair PD
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S259-69. PubMed ID: 18925362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo evaluation of a novel bioresorbable magnesium scaffold with different surface modifications.
    Menze R; Wittchow E
    J Biomed Mater Res B Appl Biomater; 2021 Sep; 109(9):1292-1302. PubMed ID: 33386677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties and in vitro degradation of self-reinforced radiopaque bioresorbable polylactide fibres.
    Nuutinen JP; Clerc C; Törmälä P
    J Biomater Sci Polym Ed; 2003; 14(7):665-76. PubMed ID: 12903735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(epsilon-caprolactone) nanocomposite scaffolds for tissue engineering: a brief overview.
    Mkhabela VJ; Ray SS
    J Nanosci Nanotechnol; 2014 Jan; 14(1):535-45. PubMed ID: 24730281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.