These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30952329)

  • 1. Influence of COM-peptides/proteins on the properties of flocs formed at different shear rates.
    Filipenska M; Vasatova P; Pivokonska L; Cermakova L; Gonzalez-Torres A; Henderson RK; Naceradska J; Pivokonsky M
    J Environ Sci (China); 2019 Jun; 80():116-127. PubMed ID: 30952329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of the physical properties of Microcystis aeruginosa flocs produced on coagulation with metal salts.
    Gonzalez-Torres A; Putnam J; Jefferson B; Stuetz RM; Henderson RK
    Water Res; 2014 Sep; 60():197-209. PubMed ID: 24859233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of cell morphology and algal organic matter on algal floc properties.
    Gonzalez-Torres A; Pivokonsky M; Henderson RK
    Water Res; 2019 Oct; 163():114887. PubMed ID: 31369920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment.
    Cao B; Gao B; Liu X; Wang M; Yang Z; Yue Q
    Water Res; 2011 Nov; 45(18):6181-8. PubMed ID: 21959092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of shear stress and pH changes on floc size and removal of dissolved organic matter (DOM).
    Slavik I; Müller S; Mokosch R; Azongbilla JA; Uhl W
    Water Res; 2012 Dec; 46(19):6543-53. PubMed ID: 23047054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of coagulant species and mechanisms on floc characteristics and filterability.
    Jiao R; Fabris R; Chow CWK; Drikas M; van Leeuwen J; Wang D
    Chemosphere; 2016 May; 150():211-218. PubMed ID: 26901478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of titanium salts compared to conventional FeCl
    Chekli L; Corjon E; Tabatabai SAA; Naidu G; Tamburic B; Park SH; Shon HK
    J Environ Manage; 2017 Oct; 201():28-36. PubMed ID: 28636970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.
    Qi J; Lan H; Liu R; Liu H; Qu J
    Water Res; 2018 Jun; 137():57-63. PubMed ID: 29533811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Floc structural characteristics using conventional coagulation for a high doc, low alkalinity surface water source.
    Jarvis P; Jefferson B; Parsons SA
    Water Res; 2006 Aug; 40(14):2727-37. PubMed ID: 16765408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of second coagulant addition on coagulation efficiency, floc properties and residual Al for humic acid treatment by Al13 polymer and polyaluminum chloride (PACl).
    Xu W; Gao B; Wang Y; Yue Q; Ren H
    J Hazard Mater; 2012 May; 215-216():129-37. PubMed ID: 22410719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in NOM during floc aging: Effect of typical Al-based coagulants and different particle sizes.
    Yu J; Xu H; Wang D; Sun H; Jiao R; Liu Y; Jin Z; Zhang S
    Water Res; 2022 Jun; 218():118486. PubMed ID: 35504159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of floc structure on membrane permeability in the coagulation-MF process.
    Cho MH; Lee CH; Lee S
    Water Sci Technol; 2005; 51(6-7):143-50. PubMed ID: 16003972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of natural organic matter on coagulation efficiency and characterization of the flocs formed].
    Xu L; Yu WZ; Liang L; Wang T
    Huan Jing Ke Xue; 2013 Nov; 34(11):4290-4. PubMed ID: 24455936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of Algal Morphology and Al Species Distribution on the Coagulation-Ultrafiltration Process].
    Zhang DW; Xu H; Wang X; Men B; Wang DS; Duan JM
    Huan Jing Ke Xue; 2017 Aug; 38(8):3281-3289. PubMed ID: 29964936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the two-dimensional and perimeter-based fractal dimensions of kaolinite flocs during flocculation: a simple experimental study.
    Zhu Z; Peng D; Dou J
    Water Sci Technol; 2018 Feb; 77(3-4):861-870. PubMed ID: 29488949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breakage and regrowth of flocs formed by sweep coagulation using additional coagulant of poly aluminium chloride and non-ionic polyacrylamide.
    Nan J; Yao M; Chen T; Li S; Wang Z; Feng G
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16336-48. PubMed ID: 27155836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Microcystis Aeruginosa removal and novel flocculation mechanisms using a novel continuous co-coagulation flotation (CCF).
    Zhang H; Li L; Cheng S; Li C; Liu F; Wang P; Sun L; Huang J; Zhang W; Zhang X
    Sci Total Environ; 2023 Jan; 857(Pt 2):159532. PubMed ID: 36257435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced algae removal by Ti-based coagulant: comparison with conventional Al- and Fe-based coagulants.
    Xu J; Zhao Y; Gao B; Zhao Q
    Environ Sci Pollut Res Int; 2018 May; 25(13):13147-13158. PubMed ID: 29492812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of algal organic matter produced by Microcystis aeruginosa on coagulation-ultrafiltration treatment of natural organic matter.
    Xu J; Zhao Y; Gao B; Han S; Zhao Q; Liu X
    Chemosphere; 2018 Apr; 196():418-428. PubMed ID: 29324383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anionic polymer compound bioflocculant as a coagulant aid with aluminum sulfate and titanium tetrachloride.
    Zhao YX; Gao BY; Shon HK; Wang Y; Kim JH; Yue QY; Bo XW
    Bioresour Technol; 2012 Mar; 108():45-54. PubMed ID: 22284758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.