These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 30952332)

  • 1. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants.
    Song D; Yang R; Long F; Zhu A
    J Environ Sci (China); 2019 Jun; 80():14-34. PubMed ID: 30952332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials.
    Alvarez-Puebla RA; dos Santos DS; Aroca RF
    Analyst; 2007 Dec; 132(12):1210-4. PubMed ID: 18318281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates.
    Ly NH; Kim MK; Lee H; Lee C; Son SJ; Zoh KD; Vasseghian Y; Joo SW
    J Nanostructure Chem; 2022; 12(5):865-888. PubMed ID: 35757049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.
    Wang C; Wu X; Dong P; Chen J; Xiao R
    Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional magnetic sphere-MoS
    Lai H; Ma G; Shang W; Chen D; Yun Y; Peng X; Xu F
    Chemosphere; 2019 May; 223():465-473. PubMed ID: 30784753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives.
    Kitaw SL; Birhan YS; Tsai HC
    Environ Res; 2023 Mar; 221():115247. PubMed ID: 36640935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in detection of mercury using surface enhanced Raman spectroscopy--A review.
    Sun Z; Du J; Jing C
    J Environ Sci (China); 2016 Jan; 39():134-143. PubMed ID: 26899652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy.
    Chen J; Pang S; He L; Nugen SR
    Biosens Bioelectron; 2016 Nov; 85():726-733. PubMed ID: 27262558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Magnetic Nanoparticle-Based Surface-Enhanced Raman Scattering Substrates for Bioanalysis: Morphology, Function and Detection Application.
    Huang H; Zhang Z; Li G
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants.
    Shi R; Liu X; Ying Y
    J Agric Food Chem; 2018 Jul; 66(26):6525-6543. PubMed ID: 28920678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry.
    Fan M; Andrade GFS; Brolo AG
    Anal Chim Acta; 2020 Feb; 1097():1-29. PubMed ID: 31910948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips.
    Chen L; Choo J
    Electrophoresis; 2008 May; 29(9):1815-28. PubMed ID: 18384070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants.
    Ye Y; Chen J; Ding Q; Lin D; Dong R; Yang L; Liu J
    Nanoscale; 2013 Jul; 5(13):5887-95. PubMed ID: 23698652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of surface-enhanced Raman scattering in advanced bio-medical technologies and diagnostics.
    Nima ZA; Biswas A; Bayer IS; Hardcastle FD; Perry D; Ghosh A; Dervishi E; Biris AS
    Drug Metab Rev; 2014 May; 46(2):155-75. PubMed ID: 24467460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERS detection of arsenic in water: A review.
    Hao J; Han MJ; Han S; Meng X; Su TL; Wang QK
    J Environ Sci (China); 2015 Oct; 36():152-62. PubMed ID: 26456617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of surface-enhanced Raman spectroscopy based on portable Raman spectrometers: A review of recent developments.
    Wang W; Ma P; Song D
    Luminescence; 2022 Nov; 37(11):1822-1835. PubMed ID: 36098329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of DNA adducts using surface-enhanced Raman spectroscopy.
    Helmenstine A; Uziel M; Vo-Dinh T
    J Toxicol Environ Health; 1993; 40(2-3):195-202. PubMed ID: 8230295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructure-Based Surface-Enhanced Raman Spectroscopy Techniques for Pesticide and Veterinary Drug Residues Screening.
    Li M; Zhang X
    Bull Environ Contam Toxicol; 2021 Aug; 107(2):194-205. PubMed ID: 32939593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the microheterogeneous repartition effect of environmental matrix on surface-enhanced Raman spectroscopy (SERS) analysis for pollutants in natural waters.
    Yang CW; Zhang X; Yuan L; Wang YK; Sheng GP
    Water Res; 2023 Apr; 232():119668. PubMed ID: 36731205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of "fab-chips" as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications.
    Robinson AM; Zhao L; Shah Alam MY; Bhandari P; Harroun SG; Dendukuri D; Blackburn J; Brosseau CL
    Analyst; 2015 Feb; 140(3):779-85. PubMed ID: 25460852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.