These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 30952339)
1. Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms. Fan C; Guo C; Zhang J; Ding C; Li X; Reinfelder JR; Lu G; Shi Z; Dang Z J Environ Sci (China); 2019 Jun; 80():218-228. PubMed ID: 30952339 [TBL] [Abstract][Full Text] [Related]
2. Transformation of cadmium-associated schwertmannite and subsequent element repartitioning behaviors. Fan C; Guo C; Chen M; Huang W; Wan J; Reinfelder JR; Li X; Zeng Y; Lu G; Dang Z Environ Sci Pollut Res Int; 2019 Jan; 26(1):617-627. PubMed ID: 30411291 [TBL] [Abstract][Full Text] [Related]
3. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite. Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551 [TBL] [Abstract][Full Text] [Related]
4. Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite. Vu HP; Moreau JW Chemosphere; 2015 Jan; 119():987-993. PubMed ID: 25303658 [TBL] [Abstract][Full Text] [Related]
5. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture. Zeng Y; Wang H; Guo C; Wan J; Fan C; Reinfelder JR; Lu G; Wu F; Huang W; Dang Z Environ Pollut; 2018 Nov; 242(Pt A):738-748. PubMed ID: 30031307 [TBL] [Abstract][Full Text] [Related]
6. Chromium(III) substitution inhibits the Fe(II)-accelerated transformation of schwertmannite. Choppala G; Burton ED PLoS One; 2018; 13(12):e0208355. PubMed ID: 30517205 [TBL] [Abstract][Full Text] [Related]
7. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite. Wang Y; Gao M; Huang W; Wang T; Liu Y Chemosphere; 2020 Jul; 251():126427. PubMed ID: 32171940 [TBL] [Abstract][Full Text] [Related]
8. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Bao Y; Guo C; Lu G; Yi X; Wang H; Dang Z Sci Total Environ; 2018 Mar; 616-617():647-657. PubMed ID: 29103647 [TBL] [Abstract][Full Text] [Related]
10. Fe(II)-mediated transformation of schwertmannite associated with calcium from acid mine drainage treatment. Fan C; Guo C; Chen W; Lu G; Shen Y; Dang Z J Environ Sci (China); 2023 Apr; 126():612-620. PubMed ID: 36503787 [TBL] [Abstract][Full Text] [Related]
11. Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage. Kim HJ; Kim Y Chemosphere; 2021 Apr; 269():128720. PubMed ID: 33121807 [TBL] [Abstract][Full Text] [Related]
12. Effect of Cu(II) on the stability of oxyanion-substituted schwertmannite. Li J; Xie Y; Lu G; Ye H; Yi X; Reinfelder JR; Lin Z; Dang Z Environ Sci Pollut Res Int; 2018 Jun; 25(16):15492-15506. PubMed ID: 29569199 [TBL] [Abstract][Full Text] [Related]
13. Phosphate-Imposed Constraints on Schwertmannite Stability under Reducing Conditions. Schoepfer VA; Burton ED; Johnston SG; Kraal P Environ Sci Technol; 2017 Sep; 51(17):9739-9746. PubMed ID: 28766328 [TBL] [Abstract][Full Text] [Related]
14. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Burton ED; Johnston SG; Kraal P; Bush RT; Claff S Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718 [TBL] [Abstract][Full Text] [Related]
15. Chemical Mineralization of AMD into Schwertmannite Fixing Iron and Sulfate Ions by Structure and Adsorption: Paving the Way for Enhanced Mineralization Capacity. He X; Tang C; Wang H; Yan H; Jin H Bull Environ Contam Toxicol; 2024 Feb; 112(2):33. PubMed ID: 38342847 [TBL] [Abstract][Full Text] [Related]
16. Phase transformation of schwertmannite in paddy soil under different water management regimes and its impact on the migration of arsenic in soil. Wang R; Zhuang J; Chen S; Li H; Wang X; Ning Z; Liu C; Zheng G; Zhou L Environ Pollut; 2024 Sep; 357():124452. PubMed ID: 38936036 [TBL] [Abstract][Full Text] [Related]
17. Effect of schwertmannite and jarosite on the formation of hypoxic blackwater during inundation of grass material. Vithana CL; Sullivan LA; Shepherd T Water Res; 2017 Nov; 124():1-10. PubMed ID: 28734957 [TBL] [Abstract][Full Text] [Related]
18. Sulfide-induced repartition of chromium associated with schwertmannite in acid mine drainage: Impacts and mechanisms. Xie Y; Ye H; Wen Z; Dang Z; Lu G Sci Total Environ; 2022 Nov; 848():157863. PubMed ID: 35934033 [TBL] [Abstract][Full Text] [Related]
19. Sorption of arsenic(V) and arsenic(III) to schwertmannite. Burton ED; Bush RT; Johnston SG; Watling KM; Hocking RK; Sullivan LA; Parker GK Environ Sci Technol; 2009 Dec; 43(24):9202-7. PubMed ID: 19921855 [TBL] [Abstract][Full Text] [Related]
20. Removal of arsenic from acidic liquors using chemical and autotrophic and mixed heterotrophic bacteria-produced biogenic schwertmannites. Nural Yaman B; Vatansever Ö; Demir EK; Aytar Çelik P; Puhakka JA; Sahinkaya E J Microbiol Methods; 2023 Aug; 211():106775. PubMed ID: 37385454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]