BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30952339)

  • 21. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphate loading alters schwertmannite transformation rates and pathways during microbial reduction.
    Schoepfer VA; Burton ED; Johnston SG; Kraal P
    Sci Total Environ; 2019 Mar; 657():770-780. PubMed ID: 30677942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction.
    Meng X; Zhang C; Zhuang J; Zheng G; Zhou L
    Chemosphere; 2020 Apr; 244():125523. PubMed ID: 31812054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. As(III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure.
    Paikaray S; Göttlicher J; Peiffer S
    Chemosphere; 2012 Feb; 86(6):557-64. PubMed ID: 22138337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid-solution reactions in As(V) sorption by schwertmannite.
    Fukushi K; Sato T; Yanase N
    Environ Sci Technol; 2003 Aug; 37(16):3581-6. PubMed ID: 12953869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of aluminum incorporation on the schwertmannite structure and surface properties.
    Carrero S; Fernandez-Martinez A; Pérez-López R; Cama J; Dejoie C; Nieto JM
    Environ Sci Process Impacts; 2022 Sep; 24(9):1383-1391. PubMed ID: 35838030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications.
    Asta MP; Cama J; Martínez M; Giménez J
    J Hazard Mater; 2009 Nov; 171(1-3):965-72. PubMed ID: 19628332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Remediation experiment of Ecuadorian acid mine drainage: geochemical models of dissolved species and secondary minerals saturation.
    Delgado J; Barba-Brioso C; Ayala D; Boski T; Torres S; Calderón E; López F
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):34854-34872. PubMed ID: 31655982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arsenic behavior during gallic acid-induced redox transformation of jarosite under acidic conditions.
    Tang Y; Xie Y; Lu G; Ye H; Dang Z; Wen Z; Tao X; Xie C; Yi X
    Chemosphere; 2020 Sep; 255():126938. PubMed ID: 32388258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antimony(V) Incorporation into Schwertmannite: Critical Insights on Antimony Retention in Acidic Environments.
    Rastegari M; Karimian N; Johnston SG; Doherty SJ; Hamilton JL; Choppala G; Hosseinpour Moghaddam M; Burton ED
    Environ Sci Technol; 2022 Dec; 56(24):17776-17784. PubMed ID: 36445713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(III) and the release of adsorbed As(III).
    Zhang J; Li W; Li Y; Zhou L; Lan Y
    Environ Pollut; 2019 Feb; 245():711-718. PubMed ID: 30500750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream.
    Park JH; Han YS; Ahn JS
    Water Res; 2016 Dec; 106():295-303. PubMed ID: 27728822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antimony and arsenic partitioning during Fe
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoreductive dissolution of schwertmannite induced by oxalate and the mobilization of adsorbed As(V).
    Ren HT; Ji ZY; Wu SH; Han X; Liu ZM; Jia SY
    Chemosphere; 2018 Oct; 208():294-302. PubMed ID: 29883864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An X-ray absorption spectroscopic study of the Fe(II)-induced transformation of Cr(VI)-substituted schwertmannite.
    Choppala G; Karimian N; Burton ED
    J Hazard Mater; 2022 Jun; 431():128580. PubMed ID: 35359110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues.
    Carlson L; Bigham JM; Schwertmann U; Kyek A; Wagner F
    Environ Sci Technol; 2002 Apr; 36(8):1712-9. PubMed ID: 11993868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TiO
    Zhu Y; Zeng C; Zhu R; Xu Y; Wang X; Zhou H; Zhu J; He H
    J Environ Sci (China); 2019 Jun; 80():208-217. PubMed ID: 30952338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD).
    Fernandez-Rojo L; Héry M; Le Pape P; Braungardt C; Desoeuvre A; Torres E; Tardy V; Resongles E; Laroche E; Delpoux S; Joulian C; Battaglia-Brunet F; Boisson J; Grapin G; Morin G; Casiot C
    Water Res; 2017 Oct; 123():594-606. PubMed ID: 28709104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater.
    Liao Y; Liang J; Zhou L
    Chemosphere; 2011 Apr; 83(3):295-301. PubMed ID: 21239041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions.
    Liu L; Guo D; Qiu G; Liu C; Ning Z
    J Environ Manage; 2022 Sep; 317():115425. PubMed ID: 35751250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.