These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30952432)

  • 61. SUMO and PIAS repress NF-κB activation in a basal chordate.
    Chen S; Fu X; Wang R; Li M; Yan X; Yue Z; Chen SW; Dong M; Xu A; Huang S
    Fish Shellfish Immunol; 2023 Jun; 137():108754. PubMed ID: 37088348
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Regulation of cardiac specific nkx2.5 gene activity by small ubiquitin-like modifier.
    Wang J; Zhang H; Iyer D; Feng XH; Schwartz RJ
    J Biol Chem; 2008 Aug; 283(34):23235-43. PubMed ID: 18579533
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Identification of a new site of sumoylation on Tel (ETV6) uncovers a PIAS-dependent mode of regulating Tel function.
    Roukens MG; Alloul-Ramdhani M; Vertegaal AC; Anvarian Z; Balog CI; Deelder AM; Hensbergen PJ; Baker DA
    Mol Cell Biol; 2008 Apr; 28(7):2342-57. PubMed ID: 18212042
    [TBL] [Abstract][Full Text] [Related]  

  • 64. SUMOylation can regulate the activity of ETS-like transcription factor 4.
    Kaikkonen S; Makkonen H; Rytinki M; Palvimo JJ
    Biochim Biophys Acta; 2010 Aug; 1799(8):555-60. PubMed ID: 20637912
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium.
    Liu F; Wang X; Su M; Yu M; Zhang S; Lai J; Yang C; Wang Y
    BMC Plant Biol; 2015 Sep; 15():225. PubMed ID: 26376625
    [TBL] [Abstract][Full Text] [Related]  

  • 66. PIAS3 induction of PRB sumoylation represses PRB transactivation by destabilizing its retention in the nucleus.
    Man JH; Li HY; Zhang PJ; Zhou T; He K; Pan X; Liang B; Li AL; Zhao J; Gong WL; Jin BF; Xia Q; Yu M; Shen BF; Zhang XM
    Nucleic Acids Res; 2006; 34(19):5552-66. PubMed ID: 17020914
    [TBL] [Abstract][Full Text] [Related]  

  • 67. NFATc1 regulation of the human beta3 integrin promoter in osteoclast differentiation.
    Crotti TN; Flannery M; Walsh NC; Fleming JD; Goldring SR; McHugh KP
    Gene; 2006 May; 372():92-102. PubMed ID: 16513293
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis.
    Bischof O; Schwamborn K; Martin N; Werner A; Sustmann C; Grosschedl R; Dejean A
    Mol Cell; 2006 Jun; 22(6):783-794. PubMed ID: 16793547
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modification by SUMOylation Controls Both the Transcriptional Activity and the Stability of Delta-Lactoferrin.
    Escobar-Ramirez A; Vercoutter-Edouart AS; Mortuaire M; Huvent I; Hardivillé S; Hoedt E; Lefebvre T; Pierce A
    PLoS One; 2015; 10(6):e0129965. PubMed ID: 26090800
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Caveolin-3 undergoes SUMOylation by the SUMO E3 ligase PIASy: sumoylation affects G-protein-coupled receptor desensitization.
    Fuhs SR; Insel PA
    J Biol Chem; 2011 Apr; 286(17):14830-41. PubMed ID: 21362625
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Site-specific SUMOylation of viral polymerase processivity factor: a way of localizingtoND10 subnuclear domains for restricted and self-controlled reproduction of herpesvirus.
    Lai S; Xu M; Wang Y; Li R; Xia C; Xia S; Chen J
    Virulence; 2021 Dec; 12(1):2883-2901. PubMed ID: 34747321
    [TBL] [Abstract][Full Text] [Related]  

  • 72. TAB2, an important upstream adaptor of interleukin-1 signaling pathway, is subject to SUMOylation.
    Wang X; Jiang J; Lu Y; Shi G; Liu R; Cao Y
    Mol Cell Biochem; 2014 Jan; 385(1-2):69-77. PubMed ID: 24096733
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Distinct functional modes of SUMOylation for retinoid X receptor alpha.
    Lee WP; Jena S; Rodriguez EP; O'Donovan SP; Wagner C; Jurutka PW; Thompson PD
    Biochem Biophys Res Commun; 2015 Aug; 464(1):195-200. PubMed ID: 26116533
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Regulation of REGγ cellular distribution and function by SUMO modification.
    Wu Y; Wang L; Zhou P; Wang G; Zeng Y; Wang Y; Liu J; Zhang B; Liu S; Luo H; Li X
    Cell Res; 2011 May; 21(5):807-16. PubMed ID: 21445096
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Identification of novel interacting regions involving calcineurin and nuclear factor of activated T cells.
    Kitamura N; Shindo M; Ohtsuka J; Nakamura A; Tanokura M; Hiroi T; Kaminuma O
    FASEB J; 2020 Feb; 34(2):3197-3208. PubMed ID: 31909857
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phosphorylation-dependent interaction of SATB1 and PIAS1 directs SUMO-regulated caspase cleavage of SATB1.
    Tan JA; Song J; Chen Y; Durrin LK
    Mol Cell Biol; 2010 Jun; 30(11):2823-36. PubMed ID: 20351170
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel role for protein inhibitor of activated STAT (PIAS) proteins in modulating the activity of Zimp7, a novel PIAS-like protein, in androgen receptor-mediated transcription.
    Peng Y; Lee J; Zhu C; Sun Z
    J Biol Chem; 2010 Apr; 285(15):11465-75. PubMed ID: 20159969
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Lack of NFATc1 SUMOylation prevents autoimmunity and alloreactivity.
    Xiao Y; Qureischi M; Dietz L; Vaeth M; Vallabhapurapu SD; Klein-Hessling S; Klein M; Liang C; König A; Serfling E; Mottok A; Bopp T; Rosenwald A; Buttmann M; Berberich I; Beilhack A; Berberich-Siebelt F
    J Exp Med; 2021 Jan; 218(1):. PubMed ID: 32986812
    [TBL] [Abstract][Full Text] [Related]  

  • 79. PIAS1 Alleviates Hepatic Ischemia-Reperfusion Injury in Mice through a Mechanism Involving NFATc1 SUMOylation.
    Luo J; Li J; Li T; Zhang Z; Chen G; Li Q; Qi H; Si Z
    Dis Markers; 2022; 2022():4988539. PubMed ID: 36092961
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Trim39 regulates neuronal apoptosis by acting as a SUMO-targeted E3 ubiquitin-ligase for the transcription factor NFATc3.
    Basu-Shrivastava M; Mojsa B; Mora S; Robbins I; Bossis G; Lassot I; Desagher S
    Cell Death Differ; 2022 Nov; 29(11):2107-2122. PubMed ID: 35449213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.