BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30952669)

  • 1. NATF (Native and Tissue-Specific Fluorescence): A Strategy for Bright, Tissue-Specific GFP Labeling of Native Proteins in
    He S; Cuentas-Condori A; Miller DM
    Genetics; 2019 Jun; 212(2):387-395. PubMed ID: 30952669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [CRISPR-Cas9 mediated genome editing in Caenorhabditis elegans].
    Meng X; Zhou H; Xu S
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1693-1699. PubMed ID: 29082717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-Specific Split sfGFP System for Streamlined Expression of GFP Tagged Proteins in the
    Hefel A; Smolikove S
    G3 (Bethesda); 2019 Jun; 9(6):1933-1943. PubMed ID: 30992318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans.
    Li W; Ou G
    Genesis; 2016 Apr; 54(4):170-81. PubMed ID: 26934570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Split-wrmScarlet and split-sfGFP: tools for faster, easier fluorescent labeling of endogenous proteins in Caenorhabditis elegans.
    Goudeau J; Sharp CS; Paw J; Savy L; Leonetti MD; York AG; Updike DL; Kenyon C; Ingaramo M
    Genetics; 2021 Apr; 217(4):. PubMed ID: 33693628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system.
    Zhao P; Zhang Z; Ke H; Yue Y; Xue D
    Cell Res; 2014 Feb; 24(2):247-50. PubMed ID: 24418757
    [No Abstract]   [Full Text] [Related]  

  • 7. Gene activation in Caenorhabditis elegans using the Campylobacter jejuni CRISPR-Cas9 feeding system.
    Luo Z; Dai W; Wang C; Ye Q; Zhou Q; Wan QL
    G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35377421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficiency CRISPR gene editing in C. elegans using Cas9 integrated into the genome.
    Schwartz ML; Davis MW; Rich MS; Jorgensen EM
    PLoS Genet; 2021 Nov; 17(11):e1009755. PubMed ID: 34748534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Microinjection to Generate Genetically Modified Caenorhabditis elegans by CRISPR/Cas9 Editing.
    Iyer J; DeVaul N; Hansen T; Nebenfuehr B
    Methods Mol Biol; 2019; 1874():431-457. PubMed ID: 30353529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing.
    Kina H; Yoshitani T; Hanyu-Nakamura K; Nakamura A
    Dev Growth Differ; 2019 May; 61(4):265-275. PubMed ID: 31037730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Efficient, Rapid and Co-CRISPR-Independent Genome Editing in
    Prior H; Jawad AK; MacConnachie L; Beg AA
    G3 (Bethesda); 2017 Nov; 7(11):3693-3698. PubMed ID: 28893845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved CRISPR/Cas9 gene editing by fluorescence activated cell sorting of green fluorescence protein tagged protoplasts.
    Petersen BL; Möller SR; Mravec J; Jørgensen B; Christensen M; Liu Y; Wandall HH; Bennett EP; Yang Z
    BMC Biotechnol; 2019 Jun; 19(1):36. PubMed ID: 31208390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NATF (Native and Tissue-Specific Fluorescence): A Strategy for Bright, Tissue-Specific GFP Labeling of Native Proteins in
    Genetics; 2019 Dec; 213(4):1567. PubMed ID: 31796555
    [No Abstract]   [Full Text] [Related]  

  • 14. Efficient Generation of Endogenous Fluorescent Reporters by Nested CRISPR in
    Vicencio J; Martínez-Fernández C; Serrat X; Cerón J
    Genetics; 2019 Apr; 211(4):1143-1154. PubMed ID: 30696716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas9-Mediated Knock-In Approach to Insert the GFP
    Tamura R; Kamiyama D
    Methods Mol Biol; 2023; 2564():185-201. PubMed ID: 36107342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering.
    Dickinson DJ; Goldstein B
    Genetics; 2016 Mar; 202(3):885-901. PubMed ID: 26953268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing of C. elegans.
    Sugi T
    Methods Mol Biol; 2017; 1630():247-254. PubMed ID: 28643264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination.
    Dickinson DJ; Ward JD; Reiner DJ; Goldstein B
    Nat Methods; 2013 Oct; 10(10):1028-34. PubMed ID: 23995389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Self-Selecting and Clone-Free Integration of Transgenes into Engineered CRISPR Safe Harbor Locations in
    Stevenson ZC; Moerdyk-Schauwecker MJ; Jamison B; Phillips PC
    G3 (Bethesda); 2020 Oct; 10(10):3775-3782. PubMed ID: 32816924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs.
    Paix A; Schmidt H; Seydoux G
    Nucleic Acids Res; 2016 Sep; 44(15):e128. PubMed ID: 27257074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.