These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 30952680)

  • 1. Perspectives on Wnt Signal Pathway in the Pathogenesis and Therapeutics of Chronic Obstructive Pulmonary Disease.
    Qu J; Yue L; Gao J; Yao H
    J Pharmacol Exp Ther; 2019 Jun; 369(3):473-480. PubMed ID: 30952680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular pathogenesis in chronic obstructive pulmonary disease and therapeutic potential by targeting AMP-activated protein kinase.
    Zhang Z; Cheng X; Yue L; Cui W; Zhou W; Gao J; Yao H
    J Cell Physiol; 2018 Mar; 233(3):1999-2006. PubMed ID: 28160496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysregulated autophagy in COPD: A pathogenic process to be deciphered.
    Tan WSD; Shen HM; Wong WSF
    Pharmacol Res; 2019 Jun; 144():1-7. PubMed ID: 30953685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in the investigation of the role of autophagy in the etiology of chronic obstructive pulmonary disease: A review.
    Wang Q; Su W; Liu J; Zhao D
    Medicine (Baltimore); 2023 Nov; 102(47):e36390. PubMed ID: 38013266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathogenesis of chronic obstructive pulmonary disease.
    MacNee W
    Proc Am Thorac Soc; 2005; 2(4):258-66; discussion 290-1. PubMed ID: 16267346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caveolin-1 improves lung injury in rats with chronic obstructive pulmonary disease partially through Wnt/β-catenin signaling pathway.
    Guan P; Cai WT; Jiang F; Li W; Zeng M; Wu J
    J Biol Regul Homeost Agents; 2020; 34(2):457-465. PubMed ID: 32475100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cigarette Smoke-Induced Acquired Dysfunction of Cystic Fibrosis Transmembrane Conductance Regulator in the Pathogenesis of Chronic Obstructive Pulmonary Disease.
    Shi J; Li H; Yuan C; Luo M; Wei J; Liu X
    Oxid Med Cell Longev; 2018; 2018():6567578. PubMed ID: 29849907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basic fibroblast growth factor activates β-catenin/RhoA signaling in pulmonary fibroblasts with chronic obstructive pulmonary disease in rats.
    Ge Z; Li B; Zhou X; Yang Y; Zhang J
    Mol Cell Biochem; 2016 Dec; 423(1-2):165-174. PubMed ID: 27734223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional significance of apoptosis in chronic obstructive pulmonary disease.
    Park JW; Ryter SW; Choi AM
    COPD; 2007 Dec; 4(4):347-53. PubMed ID: 18027162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Regulation of Wnt Pathway-Related Progression of Chronic Obstructive Pulmonary Disease Airway Lesions.
    Liu M; Huo Y; Cheng Y
    Int J Chron Obstruct Pulmon Dis; 2023; 18():871-880. PubMed ID: 37215745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WNT Signaling in Lung Aging and Disease.
    Lehmann M; Baarsma HA; Königshoff M
    Ann Am Thorac Soc; 2016 Dec; 13 Suppl 5():S411-S416. PubMed ID: 28005418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics.
    Zhou WC; Qu J; Xie SY; Sun Y; Yao HW
    Oxid Med Cell Longev; 2021; 2021():5188306. PubMed ID: 34354793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular and Molecular Biology of Mitochondria in Chronic Obstructive Pulmonary Disease.
    Li CL; Liu SF
    Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated lung aging: a novel pathogenic mechanism of chronic obstructive pulmonary disease (COPD).
    MacNee W
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):819-23. PubMed ID: 19614601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disease of the airways in chronic obstructive pulmonary disease.
    Cosio Piqueras MG; Cosio MG
    Eur Respir J Suppl; 2001 Dec; 34():41s-49s. PubMed ID: 12392034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis.
    Zhao H; Dennery PA; Yao H
    Am J Physiol Lung Cell Mol Physiol; 2018 Apr; 314(4):L544-L554. PubMed ID: 29351437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Telomere Dysfunction and Cell Senescence in Chronic Lung Diseases: Therapeutic Potential.
    Adnot S; Amsellem V; Boyer L; Marcos E; Saker M; Houssaini A; Kebe K; Dagouassat M; Lipskaia L; Boczkowski J
    Pharmacol Ther; 2015 Sep; 153():125-34. PubMed ID: 26096607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [COPD - a historical review, current management and research perspectives].
    Vogelmeier C; Worth H
    Pneumologie; 2010 Sep; 64(9):550-4. PubMed ID: 20827637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced Frizzled Receptor 4 Expression Prevents WNT/β-Catenin-driven Alveolar Lung Repair in Chronic Obstructive Pulmonary Disease.
    Skronska-Wasek W; Mutze K; Baarsma HA; Bracke KR; Alsafadi HN; Lehmann M; Costa R; Stornaiuolo M; Novellino E; Brusselle GG; Wagner DE; Yildirim AÖ; Königshoff M
    Am J Respir Crit Care Med; 2017 Jul; 196(2):172-185. PubMed ID: 28245136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel aspects of pathogenesis and regeneration mechanisms in COPD.
    Bagdonas E; Raudoniute J; Bruzauskaite I; Aldonyte R
    Int J Chron Obstruct Pulmon Dis; 2015; 10():995-1013. PubMed ID: 26082624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.