BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 30952895)

  • 1. High-Throughput, Time-Resolved Mechanical Phenotyping of Prostate Cancer Cells.
    Belotti Y; Tolomeo S; Conneely MJ; Huang T; McKenna SJ; Nabi G; McGloin D
    Sci Rep; 2019 Apr; 9(1):5742. PubMed ID: 30952895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical phenotyping of breast cell lines by in-flow deformation-dependent dynamics under tuneable compressive forces.
    Dannhauser D; Maremonti MI; Panzetta V; Rossi D; Netti PA; Causa F
    Lab Chip; 2020 Dec; 20(24):4611-4622. PubMed ID: 33146642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-Enhanced Raman Scattering Based Microfluidics for Single-Cell Analysis.
    Willner MR; McMillan KS; Graham D; Vikesland PJ; Zagnoni M
    Anal Chem; 2018 Oct; 90(20):12004-12010. PubMed ID: 30230817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Microfluidic Platform for Biomechano-Stimulations on a Chip.
    Prevedello L; Michielin F; Balcon M; Savio E; Pavan P; Elvassore N
    Ann Biomed Eng; 2019 Jan; 47(1):231-242. PubMed ID: 30218223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Cell Stretching in Viscoelastic Fluids with Electronically Triggered Imaging for Cellular Mechanical Phenotyping.
    Liang M; Yang D; Zhou Y; Li P; Zhong J; Ai Y
    Anal Chem; 2021 Mar; 93(10):4567-4575. PubMed ID: 33661609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral cancer diagnosis by mechanical phenotyping.
    Remmerbach TW; Wottawah F; Dietrich J; Lincoln B; Wittekind C; Guck J
    Cancer Res; 2009 Mar; 69(5):1728-32. PubMed ID: 19223529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The eternal enigma in prostatic biopsy access route.
    Fabiani A; Principi E; Filosa A; Servi L
    Arch Ital Urol Androl; 2017 Oct; 89(3):245-246. PubMed ID: 28969413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing single suspended cells by optorheology.
    Wottawah F; Schinkinger S; Lincoln B; Ebert S; Müller K; Sauer F; Travis K; Guck J
    Acta Biomater; 2005 May; 1(3):263-71. PubMed ID: 16701805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A programmable microfluidic cell array for combinatorial drug screening.
    Kim J; Taylor D; Agrawal N; Wang H; Kim H; Han A; Rege K; Jayaraman A
    Lab Chip; 2012 Apr; 12(10):1813-22. PubMed ID: 22456798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell detachment model for an antibody-based microfluidic cancer screening system.
    Wankhede SP; Du Z; Berg JM; Vaughn MW; Dallas T; Cheng KH; Gollahon L
    Biotechnol Prog; 2006; 22(5):1426-33. PubMed ID: 17022683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct Osteomimetic Response of Androgen-Dependent and Independent Human Prostate Cancer Cells to Mechanical Action of Fluid Flow: Prometastatic Implications.
    González Á; García de Durango C; Alonso V; Bravo B; Rodríguez de Gortázar A; Wells A; Forteza J; Vidal-Vanaclocha F
    Prostate; 2017 Feb; 77(3):321-333. PubMed ID: 27813116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Bifurcation Effect on Various Microfluidic Designs for Blood Separation.
    Hamad EM; Sawalmeh B; Mhawsh AA; Mansour M; Awad M; Al-Halhouli AT; Al-Gharabli SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1097-1100. PubMed ID: 31946085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free ferrohydrodynamic cell separation of circulating tumor cells.
    Zhao W; Cheng R; Jenkins BD; Zhu T; Okonkwo NE; Jones CE; Davis MB; Kavuri SK; Hao Z; Schroeder C; Mao L
    Lab Chip; 2017 Sep; 17(18):3097-3111. PubMed ID: 28809987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformability-based cell classification and enrichment using inertial microfluidics.
    Hur SC; Henderson-MacLennan NK; McCabe ER; Di Carlo D
    Lab Chip; 2011 Mar; 11(5):912-20. PubMed ID: 21271000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet microfluidics--a tool for single-cell analysis.
    Joensson HN; Andersson Svahn H
    Angew Chem Int Ed Engl; 2012 Dec; 51(49):12176-92. PubMed ID: 23180509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments.
    Hassanzadeh-Barforoushi A; Warkiani ME; Gallego-Ortega D; Liu G; Barber T
    Biosens Bioelectron; 2020 May; 155():112113. PubMed ID: 32217335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.