BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30952952)

  • 41. Chimeric mice with hepatocyte-humanized liver as an appropriate model to study human peroxisome proliferator-activated receptor-α.
    Tateno C; Yamamoto T; Utoh R; Yamasaki C; Ishida Y; Myoken Y; Oofusa K; Okada M; Tsutsui N; Yoshizato K
    Toxicol Pathol; 2015 Feb; 43(2):233-48. PubMed ID: 25107573
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcription coactivator PRIP, the peroxisome proliferator-activated receptor (PPAR)-interacting protein, is redundant for the function of nuclear receptors PParalpha and CAR, the constitutive androstane receptor, in mouse liver.
    Sarkar J; Qi C; Guo D; Ahmed MR; Jia Y; Usuda N; Viswakarma N; Rao MS; Reddy JK
    Gene Expr; 2007; 13(4-5):255-69. PubMed ID: 17605299
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.
    Kim KH; Moore DD
    Dig Dis; 2017; 35(3):203-209. PubMed ID: 28249296
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinase-independent transcriptional co-activation of peroxisome proliferator-activated receptor alpha by AMP-activated protein kinase.
    Bronner M; Hertz R; Bar-Tana J
    Biochem J; 2004 Dec; 384(Pt 2):295-305. PubMed ID: 15312046
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt.
    Jia Y; Wu C; Kim J; Kim B; Lee SJ
    J Nutr Biochem; 2016 Feb; 28():9-18. PubMed ID: 26878778
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antagonizing Peroxisome Proliferator-Activated Receptor α Activity Selectively Enhances Th1 Immunity in Male Mice.
    Zhang MA; Ahn JJ; Zhao FL; Selvanantham T; Mallevaey T; Stock N; Correa L; Clark R; Spaner D; Dunn SE
    J Immunol; 2015 Dec; 195(11):5189-202. PubMed ID: 26491197
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oleic acid-induced perilipin 5 expression and lipid droplets formation are regulated by the PI3K/PPARα pathway in HepG2 cells.
    Zhong W; Fan B; Cong H; Wang T; Gu J
    Appl Physiol Nutr Metab; 2019 Aug; 44(8):840-848. PubMed ID: 31274012
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential gene expression in mouse primary hepatocytes exposed to the peroxisome proliferator-activated receptor alpha agonists.
    Guo L; Fang H; Collins J; Fan XH; Dial S; Wong A; Mehta K; Blann E; Shi L; Tong W; Dragan YP
    BMC Bioinformatics; 2006 Sep; 7 Suppl 2(Suppl 2):S18. PubMed ID: 17118139
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice.
    Montgomery RL; Potthoff MJ; Haberland M; Qi X; Matsuzaki S; Humphries KM; Richardson JA; Bassel-Duby R; Olson EN
    J Clin Invest; 2008 Nov; 118(11):3588-97. PubMed ID: 18830415
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RACK1 Promotes Autophagy by Enhancing the Atg14L-Beclin 1-Vps34-Vps15 Complex Formation upon Phosphorylation by AMPK.
    Zhao Y; Wang Q; Qiu G; Zhou S; Jing Z; Wang J; Wang W; Cao J; Han K; Cheng Q; Shen B; Chen Y; Zhang WJ; Ma Y; Zhang J
    Cell Rep; 2015 Nov; 13(7):1407-1417. PubMed ID: 26549445
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARα pathway.
    Huang Y; Lang H; Chen K; Zhang Y; Gao Y; Ran L; Yi L; Mi M; Zhang Q
    Appl Physiol Nutr Metab; 2020 Mar; 45(3):227-239. PubMed ID: 31173696
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Non-esterified fatty acids activate the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.
    Li X; Li X; Chen H; Lei L; Liu J; Guan Y; Liu Z; Zhang L; Yang W; Zhao C; Fu S; Li P; Liu G; Wang Z
    Cell Biochem Biophys; 2013; 67(3):1157-69. PubMed ID: 23690240
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acute β-Hydroxy-β-Methyl Butyrate Suppresses Regulators of Mitochondrial Biogenesis and Lipid Oxidation While Increasing Lipid Content in Myotubes.
    Schnuck JK; Johnson MA; Gould LM; Gannon NP; Vaughan RA
    Lipids; 2016 Oct; 51(10):1127-1136. PubMed ID: 27600148
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation.
    Kamarajugadda S; Becker JR; Hanse EA; Mashek DG; Mashek MT; Hendrickson AM; Mullany LK; Albrecht JH
    Oncotarget; 2016 Jul; 7(30):47674-47686. PubMed ID: 27351284
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Upregulation of miR-181a impairs lipid metabolism by targeting PPARα expression in nonalcoholic fatty liver disease.
    Huang R; Duan X; Liu X; Cao H; Wang Y; Fan J; Wang B
    Biochem Biophys Res Commun; 2019 Jan; 508(4):1252-1258. PubMed ID: 30558790
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PPARα/HNF4α interplay on diversified responsive elements. Relevance in the regulation of liver peroxisomal fatty acid catabolism.
    Chamouton J; Latruffe N
    Curr Drug Metab; 2012 Dec; 13(10):1436-53. PubMed ID: 22978398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy.
    Sinha RA; You SH; Zhou J; Siddique MM; Bay BH; Zhu X; Privalsky ML; Cheng SY; Stevens RD; Summers SA; Newgard CB; Lazar MA; Yen PM
    J Clin Invest; 2012 Jul; 122(7):2428-38. PubMed ID: 22684107
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An essential role for phosphatidylinositol 3-kinase in the inhibition of phagosomal maturation, intracellular survival and virulence in Candida glabrata.
    Rai MN; Sharma V; Balusu S; Kaur R
    Cell Microbiol; 2015 Feb; 17(2):269-87. PubMed ID: 25223215
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rice Koji Extract Enhances Lipid Metabolism through Proliferator-Activated Receptor Alpha (PPARα) Activation in Mouse Liver.
    Takahashi H; Chi HY; Mohri S; Kamakari K; Nakata K; Ichijo N; Nakata R; Inoue H; Goto T; Kawada T
    J Agric Food Chem; 2016 Nov; 64(46):8848-8856. PubMed ID: 27934292
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nutritional background changes the hypolipidemic effects of fenofibrate in Nile tilapia (Oreochromis niloticus).
    Ning LJ; He AY; Lu DL; Li JM; Qiao F; Li DL; Zhang ML; Chen LQ; Du ZY
    Sci Rep; 2017 Jan; 7():41706. PubMed ID: 28139735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.