These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30952974)

  • 1. Thermal transport across grain boundaries in polycrystalline silicene: A multiscale modeling.
    Khalkhali M; Rajabpour A; Khoeini F
    Sci Rep; 2019 Apr; 9(1):5684. PubMed ID: 30952974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimodal Grain-Size Scaling of Thermal Transport in Polycrystalline Graphene from Large-Scale Molecular Dynamics Simulations.
    Fan Z; Hirvonen P; Pereira LFC; Ervasti MM; Elder KR; Donadio D; Harju A; Ala-Nissila T
    Nano Lett; 2017 Oct; 17(10):5919-5924. PubMed ID: 28877440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat transport in pristine and polycrystalline single-layer hexagonal boron nitride.
    Dong H; Hirvonen P; Fan Z; Ala-Nissila T
    Phys Chem Chem Phys; 2018 Oct; 20(38):24602-24612. PubMed ID: 30229758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity of random polycrystalline BC
    Fooladpanjeh S; Yousefi F; Molaei F; Zarghami Dehaghani M; Sajadi SM; Abida O; Habibzadeh S; Hamed Mashhadzadeh A; Saeb MR
    J Mol Graph Model; 2021 Sep; 107():107977. PubMed ID: 34237665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An insight into thermal properties of BC
    Dehaghani MZ; Molaei F; Yousefi F; Sajadi SM; Esmaeili A; Mohaddespour A; Farzadian O; Habibzadeh S; Mashhadzadeh AH; Spitas C; Saeb MR
    Sci Rep; 2021 Nov; 11(1):23064. PubMed ID: 34845328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.
    Mortazavi B; Pötschke M; Cuniberti G
    Nanoscale; 2014 Mar; 6(6):3344-52. PubMed ID: 24518878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations.
    Bagri A; Kim SP; Ruoff RS; Shenoy VB
    Nano Lett; 2011 Sep; 11(9):3917-21. PubMed ID: 21863804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.
    Noshin M; Khan AI; Subrina S
    Nanotechnology; 2018 May; 29(18):185706. PubMed ID: 29438099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal transport in monocrystalline and polycrystalline lithium cobalt oxide.
    He J; Zhang L; Liu L
    Phys Chem Chem Phys; 2019 Jun; 21(23):12192-12200. PubMed ID: 31149685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene.
    Kuang YD; Lindsay L; Shi SQ; Zheng GP
    Nanoscale; 2016 Feb; 8(6):3760-7. PubMed ID: 26815838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Plane Thermal Conductivity of Polycrystalline Chemical Vapor Deposition Graphene with Controlled Grain Sizes.
    Lee W; Kihm KD; Kim HG; Shin S; Lee C; Park JS; Cheon S; Kwon OM; Lim G; Lee W
    Nano Lett; 2017 Apr; 17(4):2361-2366. PubMed ID: 28252971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Record Low Thermal Conductivity of Polycrystalline MoS
    Sledzinska M; Quey R; Mortazavi B; Graczykowski B; Placidi M; Saleta Reig D; Navarro-Urrios D; Alzina F; Colombo L; Roche S; Sotomayor Torres CM
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37905-37911. PubMed ID: 28956443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.
    Mortazavi B; Pereira LFC; Jiang JW; Rabczuk T
    Sci Rep; 2015 Aug; 5():13228. PubMed ID: 26286820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon-Grain-Boundary-Interaction-Mediated Thermal Transport in Two-Dimensional Polycrystalline MoS
    Lin C; Chen X; Zou X
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25547-25555. PubMed ID: 31273972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Mosaicity to Tune Thermal Transport in Polycrystalline Aluminum Nitride Thin Films.
    Singh S; Shervin S; Sun H; Yarali M; Chen J; Lin R; Li KH; Li X; Ryou JH; Mavrokefalos A
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20085-20094. PubMed ID: 29772174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.
    Wang X; Hong Y; Chan PKL; Zhang J
    Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics study of grain boundaries and triple junctions in ice.
    Yagasaki T; Matsumoto M; Tanaka H
    J Chem Phys; 2020 Sep; 153(12):124502. PubMed ID: 33003762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable thermal conductivity of thin films of polycrystalline AlN by structural inhomogeneity and interfacial oxidation.
    Jaramillo-Fernandez J; Ordonez-Miranda J; Ollier E; Volz S
    Phys Chem Chem Phys; 2015 Mar; 17(12):8125-37. PubMed ID: 25729791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal Conductivity of Large-Area Polycrystalline MoSe
    Sun J; Dai K; Xia W; Chen J; Jiang K; Li Y; Zhang J; Zhu L; Shang L; Hu Z; Chu J
    ACS Omega; 2021 Nov; 6(45):30526-30533. PubMed ID: 34805681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.